L5 PFC pyramidal neurons (Papoutsi et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:230811
" ... Here, we use a modeling approach to investigate whether and how the morphology of the basal tree mediates the functional output of neurons. We implemented 57 basal tree morphologies of layer 5 prefrontal pyramidal neurons of the rat and identified morphological types which were characterized by different response features, forming distinct functional types. These types were robust to a wide range of manipulations (distribution of active ionic mechanisms, NMDA conductance, somatic and apical tree morphology or the number of activated synapses) and supported different temporal coding schemes at both the single neuron and the microcircuit level. We predict that the basal tree morphological diversity among neurons of the same class mediates their segregation into distinct functional pathways. ..."
Reference:
1 . Papoutsi A, Kastellakis G, Poirazi P (2017) Basal tree complexity shapes functional pathways in the prefrontal cortex. J Neurophysiol 118:1970-1983 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Prefrontal cortex (PFC);
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I A; I h; I L high threshold; I T low threshold; I N; I R; I K,Ca; I_AHP; I_Ks; I Na,p; I Na,t; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA; GabaB;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Papoutsi, Athanasia [athpapoutsi at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I h; I K,Ca; I_Ks; I R; I_AHP; Gaba; Glutamate;
/
PapoutsiEtAl2017
mod_files
ampa.mod
ampain.mod
cad.mod
cal.mod
can.mod *
car.mod *
cat.mod *
gabaa.mod *
gabaain.mod
gabab.mod *
h.mod
iks_in.mod
kadist.mod *
kca.mod *
kct.mod *
kd.mod
kdr_in.mod
kdrD.mod *
naf.mod
naf_in.mod
nap.mod *
NMDA.mod
NMDA_syn.mod
vecstim.mod
                            
: Fast Na+ channel

NEURON {
	SUFFIX Naf_in
	USEION na READ ena WRITE ina
	RANGE gnafbar, ina, gna
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {
	v (mV)
	dt (ms)
	gnafbar= 0.086 (mho/cm2) <0,1e9>
	ena = 55 (mV)

}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	minf hinf 
	mtau (ms)
	htau (ms)
	gna (mho/cm2)
	
}



INITIAL {
	rate(v)
	m = minf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gna = gnafbar*m*m*m*h
	ina = gna*(v-55)
	
}

DERIVATIVE states {
	rate(v)
	m' = (minf-m)/mtau
	h' = (hinf-h)/htau
}

UNITSOFF

FUNCTION malf( v){ LOCAL va 
	va=v+28
	if (fabs(va)<1e-04){
	   malf= -0.2816*(-9.3 + va*0.5)
	}else{
	   malf = -0.2816*(v+28)/(-1+exp(-(v+28)/9.3))
	}
}


FUNCTION mbet(v(mV))(/ms) { LOCAL vb 
	vb=v+1
	if (fabs(vb)<1e-04){
	   mbet = 0.2464*(6 + vb*0.5)
	}else{
	   mbet = 0.2464*(v+1)/(-1+exp((v+1)/6))
}
}	


FUNCTION half(v(mV))(/ms) { LOCAL vc 
	vc=v+43.1
	if (fabs(vc)<1e-04){
	   half=0.098*(20 + vc*0.5)
	}else{
	   half=0.098/exp((v+23.1)/20) :was 43.1
}
}


FUNCTION hbet(v(mV))(/ms) { LOCAL vd
	vd=v+13.1
	if (fabs(vd)<1e-04){
	   hbet=1.4*(10 + vd*0.5)
	}else{
	   hbet=1.4/(1+exp(-(v+25.1)/10)) :was 13.1 changed july 30, 2007
} 
}




PROCEDURE rate(v (mV)) {LOCAL q10, msum, hsum, ma, mb, ha, hb
	

	ma=malf(v) mb=mbet(v) ha=half(v) hb=hbet(v)
	
	msum = ma+mb
	minf = ma/msum
	mtau = 1/(msum)
	
	
	hsum=ha+hb
	hinf=ha/hsum
	htau = 1 / (hsum)
	
}

	
UNITSON



Loading data, please wait...