Shaping NMDA spikes by timed synaptic inhibition on L5PC (Doron et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:231427
This work (published in "Timed synaptic inhibition shapes NMDA spikes, influencing local dendritic processing and global I/O properties of cortical neurons", Doron et al, Cell Reports, 2017), examines the effect of timed inhibition over dendritic NMDA spikes on L5PC (Based on Hay et al., 2011) and CA1 cell (Based on Grunditz et al. 2008 and Golding et al. 2001).
Reference:
1 . Doron M, Chindemi G, Muller E, Markram H, Segev I (2017) Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons. Cell Rep 21:1550-1561 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions:
Receptor(s): NMDA; GabaA; AMPA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Doron, Michael [michael.doron at mail.huji.ac.il];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
reproduction
readme.txt
ampa.mod
Ca_HVA.mod
Ca_LVAst.mod *
cad.mod *
cadiffus.mod
CaDynamics_E2.mod *
canmda.mod *
car.mod *
gabaa.mod *
gabab.mod *
Ih.mod *
Im.mod *
K_Pst.mod *
K_Tst.mod *
Nap_Et2.mod *
NaTa_t.mod *
NaTs2_t.mod *
nmda.mod *
ProbAMPA.mod
ProbAMPANMDA2_ratio.mod
ProbUDFsyn2_lark.mod
SK_E2.mod *
SKv3_1.mod *
SynExp5NMDA.mod *
cell1.asc *
cellmorphology.hoc *
create_data_for_figure_01.py
create_data_for_figure_02.py
create_data_for_figure_03.py *
create_data_for_figure_03_control.py
create_data_for_figure_03_Dt_10.py *
create_data_for_figure_03_Dt_40.py *
data_same_excitation.pickle
iniparameter.hoc
L5PCbiophys3.hoc
L5PCbiophys3_noActive.hoc
mosinit.hoc
plot_figure_01.py
plot_figure_02.py
plot_figure_03.py
plot_figure_04.py
plot_figure_05.py
plot_figure_06.py
spikes_num.pickle
spine.hoc
TTC.hoc
                            
// Author: Etay Hay, 2011
//    Models of Neocortical Layer 5b Pyramidal Cells Capturing a Wide Range of
//    Dendritic and Perisomatic Active Properties
//    (Hay et al., PLoS Computational Biology, 2011) 
//
// Model of L5 Pyramidal Cell, constrained both for BAC firing and Current Step Firing


begintemplate L5PCbiophys
public biophys

proc biophys() {
  forsec $o1.all {
    insert pas
    cm = 1
    Ra = 100
    e_pas = -90
  }

  forsec $o1.somatic {
    insert Ca_LVAst 
    insert Ca_HVA 
    insert SKv3_1 
    insert SK_E2 
    insert K_Tst 
    insert K_Pst 
    insert Nap_Et2 
    insert NaTa_t
    insert CaDynamics_E2
    insert Ih
    ek = -85
    ena = 50
    gIhbar_Ih = 0.0002
    g_pas = 0.0000338 
    decay_CaDynamics_E2 = 460.0 
    gamma_CaDynamics_E2 = 0.000501 
    gCa_LVAstbar_Ca_LVAst = 0.00343 
    gCa_HVAbar_Ca_HVA = 0.000992 
    gSKv3_1bar_SKv3_1 = 0.693 
    gSK_E2bar_SK_E2 = 0.0441 
    gK_Tstbar_K_Tst = 0.0812 
    gK_Pstbar_K_Pst = 0.00223 
    gNap_Et2bar_Nap_Et2 = 0.00172 
    gNaTa_tbar_NaTa_t = 2.04 
  }

  forsec $o1.apical {
    cm = 2
    insert Ih
    insert SK_E2 
    insert Ca_LVAst 
    insert Ca_HVA 
    insert SKv3_1 
    insert NaTa_t 
    insert Im 
    insert CaDynamics_E2
    ek = -85
    ena = 50
    decay_CaDynamics_E2 = 122 
    gamma_CaDynamics_E2 = 0.000509 
    gSK_E2bar_SK_E2 = 0.0012 
    gSKv3_1bar_SKv3_1 = 0.000261 
    gNaTa_tbar_NaTa_t = 0.0213 
    gImbar_Im = 0.0000675 
    g_pas = 0.0000589 
  }
  
  $o1.distribute_channels("apic","gIhbar_Ih",2,-0.8696,3.6161,0.0,2.0870,0.00020000000) 
  $o1.distribute_channels("apic","gCa_LVAstbar_Ca_LVAst",3,1.000000,0.010000,685.000000,885.000000,0.0187000000) 
  $o1.distribute_channels("apic","gCa_HVAbar_Ca_HVA",3,1.000000,0.100000,685.000000,885.000000,0.0005550000) 
	
  forsec $o1.basal {
		cm = 2
		insert Ih
		gIhbar_Ih = 0.0002
  	g_pas = 0.0000467 
	}

  forsec $o1.axonal {
  	g_pas = 0.0000325 
	}
}

endtemplate L5PCbiophys

Loading data, please wait...