TITLE AMPA and NMDA receptor with presynaptic short-term plasticity
COMMENT
AMPA and NMDA receptor conductance using a dual-exponential profile
presynaptic short-term plasticity based on Fuhrmann et al. 2002
Implemented by Srikanth Ramaswamy, Blue Brain Project, July 2009
Etay: changed weight to be equal for NMDA and AMPA, gmax accessible in Neuron
ENDCOMMENT
NEURON {
POINT_PROCESS ProbAMPA
RANGE tau_r_AMPA, tau_d_AMPA, tau_r_NMDA, tau_d_NMDA
RANGE Use, u, Dep, Fac, u0, weight_NMDA
RANGE i, i_AMPA, i_NMDA, g_AMPA, g_NMDA, e, gmax, mgVoltageCoeff
NONSPECIFIC_CURRENT i
POINTER rng
}
PARAMETER {
tau_r_AMPA = 0.2 (ms) : dual-exponential conductance profile
tau_d_AMPA = 1.7 (ms) : IMPORTANT: tau_r < tau_d
tau_r_NMDA = 0.00000001 (ms) : dual-exponential conductance profile
tau_d_NMDA = 0.00000002 (ms) : IMPORTANT: tau_r < tau_d
Use = 1.0 (1) : Utilization of synaptic efficacy (just initial values! Use, Dep and Fac are overwritten by BlueBuilder assigned values)
Dep = 100 (ms) : relaxation time constant from depression
Fac = 10 (ms) : relaxation time constant from facilitation
e = 0 (mV) : AMPA and NMDA reversal potential
mg = 1 (mM) : initial concentration of mg2+
mgVoltageCoeff = 0.08 (mV) : the coefficient for the voltage dependance of the equation
mggate
gmax = .001 (uS) : weight conversion factor (from nS to uS)
u0 = 0 :initial value of u, which is the running value of Use
}
COMMENT
The Verbatim block is needed to generate random nos. from a uniform distribution between 0 and 1
for comparison with Pr to decide whether to activate the synapse or not
ENDCOMMENT
VERBATIM
#include<stdlib.h>
#include<stdio.h>
#include<math.h>
double nrn_random_pick(void* r);
void* nrn_random_arg(int argpos);
ENDVERBATIM
ASSIGNED {
v (mV)
i (nA)
i_AMPA (nA)
i_NMDA (nA)
g_AMPA (uS)
g_NMDA (uS)
factor_AMPA
factor_NMDA
rng
weight_NMDA
}
STATE {
A_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_r_AMPA
B_AMPA : AMPA state variable to construct the dual-exponential profile - decays with conductance tau_d_AMPA
A_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_r_NMDA
B_NMDA : NMDA state variable to construct the dual-exponential profile - decays with conductance tau_d_NMDA
}
INITIAL{
LOCAL tp_AMPA, tp_NMDA
A_AMPA = 0
B_AMPA = 0
A_NMDA = 0
B_NMDA = 0
tp_AMPA = (tau_r_AMPA*tau_d_AMPA)/(tau_d_AMPA-tau_r_AMPA)*log(tau_d_AMPA/tau_r_AMPA) :time to peak of the conductance
tp_NMDA = (tau_r_NMDA*tau_d_NMDA)/(tau_d_NMDA-tau_r_NMDA)*log(tau_d_NMDA/tau_r_NMDA) :time to peak of the conductance
factor_AMPA = -exp(-tp_AMPA/tau_r_AMPA)+exp(-tp_AMPA/tau_d_AMPA) :AMPA Normalization factor - so that when t = tp_AMPA, gsyn = gpeak
factor_AMPA = 1/factor_AMPA
factor_NMDA = -exp(-tp_NMDA/tau_r_NMDA)+exp(-tp_NMDA/tau_d_NMDA) :NMDA Normalization factor - so that when t = tp_NMDA, gsyn = gpeak
factor_NMDA = 1/factor_NMDA
}
BREAKPOINT {
SOLVE state METHOD cnexp
mggate = 1 / (1 + exp(mgVoltageCoeff * -(v)) * (mg / 3.57 (mM))) :mggate kinetics - Jahr & Stevens 1990
g_AMPA = (1) * gmax * (B_AMPA-A_AMPA) :compute time varying conductance as the difference of state variables B_AMPA and A_AMPA
g_NMDA = 0*gmax*(B_NMDA-A_NMDA) * mggate :compute time varying conductance as the difference of state variables B_NMDA and A_NMDA and mggate kinetics
i_AMPA = g_AMPA*(v-e) :compute the AMPA driving force based on the time varying conductance, membrane potential, and AMPA reversal
i_NMDA = g_NMDA*(v-e) :compute the NMDA driving force based on the time varying conductance, membrane potential, and NMDA reversal
i = i_AMPA + i_NMDA
}
DERIVATIVE state{
A_AMPA' = -A_AMPA/tau_r_AMPA
B_AMPA' = -B_AMPA/tau_d_AMPA
A_NMDA' = -A_NMDA/tau_r_NMDA
B_NMDA' = -B_NMDA/tau_d_NMDA
}
NET_RECEIVE (weight,weight_AMPA, weight_NMDA, Pv, Pr, u, tsyn (ms)){
weight_AMPA = weight
weight_NMDA = weight
:printf("NMDA weight = %g\n", weight_NMDA)
INITIAL{
Pv=1
u=u0
tsyn=t
}
: calc u at event-
if (Fac > 0) {
u = u*exp(-(t - tsyn)/Fac) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
} else {
u = Use
}
if(Fac > 0){
u = u + Use*(1-u) :update facilitation variable if Fac>0 Eq. 2 in Fuhrmann et al.
}
Pv = 1 - (1-Pv) * exp(-(t-tsyn)/Dep) :Probability Pv for a vesicle to be available for release, analogous to the pool of synaptic
:resources available for release in the deterministic model. Eq. 3 in Fuhrmann et al.
Pr = u * Pv :Pr is calculated as Pv * u (running value of Use)
Pv = Pv - u * Pv :update Pv as per Eq. 3 in Fuhrmann et al.
:printf("Pv = %g\n", Pv)
:printf("Pr = %g\n", Pr)
tsyn = t
if (erand() < Pr){
A_AMPA = A_AMPA + weight_AMPA*factor_AMPA
B_AMPA = B_AMPA + weight_AMPA*factor_AMPA
A_NMDA = A_NMDA + weight_NMDA*factor_NMDA
B_NMDA = B_NMDA + weight_NMDA*factor_NMDA
}
}
PROCEDURE setRNG() {
VERBATIM
{
/**
* This function takes a NEURON Random object declared in hoc and makes it usable by this mod file.
* Note that this method is taken from Brett paper as used by netstim.hoc and netstim.mod
* which points out that the Random must be in negexp(1) mode
*/
void** pv = (void**)(&_p_rng);
if( ifarg(1)) {
*pv = nrn_random_arg(1);
} else {
*pv = (void*)0;
}
}
ENDVERBATIM
}
FUNCTION erand() {
VERBATIM
//FILE *fi;
double value;
if (_p_rng) {
/*
:Supports separate independent but reproducible streams for
: each instance. However, the corresponding hoc Random
: distribution MUST be set to Random.negexp(1)
*/
value = nrn_random_pick(_p_rng);
//fi = fopen("RandomStreamMCellRan4.txt", "w");
//fprintf(fi,"random stream for this simulation = %lf\n",value);
//printf("random stream for this simulation = %lf\n",value);
return value;
}else{
ENDVERBATIM
: the old standby. Cannot use if reproducible parallel sim
: independent of nhost or which host this instance is on
: is desired, since each instance on this cpu draws from
: the same stream
erand = exprand(1)
VERBATIM
}
ENDVERBATIM
erand = value
}