2D model of olfactory bulb gamma oscillations (Li and Cleland 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:232097
This is a biophysical model of the olfactory bulb (OB) that contains three types of neurons: mitral cells, granule cells and periglomerular cells. The model is used to study the cellular and synaptic mechanisms of OB gamma oscillations. We concluded that OB gamma oscillations can be best modeled by the coupled oscillator architecture termed pyramidal resonance inhibition network gamma (PRING).
Reference:
1 . Li G, Cleland TA (2017) A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput Biol 13:e1005760 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron periglomerular GABA cell;
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Olfaction;
Implementer(s): Li, Guoshi [guoshi_li at med.unc.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron periglomerular GABA cell; Olfactory bulb main interneuron granule MC GABA cell; GabaA; AMPA; NMDA;
/
OBGAMMA
celldata
connection
data0
input
README
cadecay.mod *
cadecay2.mod *
Caint.mod *
Can.mod *
CaPN.mod *
CaT.mod *
GradeAMPA.mod *
GradeGABA.mod *
GradNMDA.mod *
hpg.mod *
kAmt.mod *
KCa.mod *
KDRmt.mod *
kfasttab.mod *
kM.mod *
KS.mod
kslowtab.mod *
LCa.mod *
nafast.mod *
NaP.mod *
Naxn.mod *
Nicotin.mod *
nmdanet.mod *
OdorInput.mod *
SineInput.mod
Background.hoc
Cal_Synch.hoc
Connect.hoc
Figure.hoc
GC_def.hoc
GC_save.hoc *
GC_Stim.hoc
Input.hoc
mathslib.hoc
MC_def.hoc
MC_save.hoc
MC_Stim.hoc
mosinit.hoc
OBNet.hoc
Parameter.hoc
PG_def.hoc
PG_save.hoc *
PG_Stim.hoc
SaveData.hoc
tabchannels.dat *
tabchannels.hoc
                            
TITLE Slow inactivating current Iks

COMMENT
     Slow inactivating current: Wang 1993 Neuroreport
ENDCOMMENT

:INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 

NEURON { 
	SUFFIX IKs
	USEION k READ ek WRITE ik
	RANGE gbar, ik, tauM, kh
}

PARAMETER { 
	gbar =  0.0 	(mho/cm2)
	ek   = -70	(mV)
	kh    =  1.5       : 1.5 !!!
	sha  =  0   (mV)
	shi  =  -3   (mV) : -3 !!!
	tauM = 10   (ms) : 10
} 

ASSIGNED { 
    v  (mV)
	ik  		(mA/cm2) 
	minf 		
	mtau 		(ms)
	hinf
	htau		(ms)
} 

STATE {
	m h
}

INITIAL { 
	Rates(v) 
	m = minf
	h = hinf
} 

BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gbar * m * h * ( v - ek )
} 


DERIVATIVE states { 
	Rates(v) 
	m' = ( minf - m ) / mtau
	h' = ( hinf - h ) / htau 
}

UNITSOFF
 
PROCEDURE Rates(v) { 
	:TABLE minf, mtau, hinf, htau FROM -120 TO 40 WITH 641
	minf  = 1 / ( 1 + exp( -(v + 34 - sha) / 6.5 ) ) 
	mtau  = tauM 
	hinf = 1 / ( 1 + exp((v + 65 - shi) / 6.6 ))
	htau = 200 + kh*220/( 1 + exp( -(v + 71.6) / 6.85 ))
}
UNITSON


Loading data, please wait...