Electrotonic transform and EPSCs for WT and Q175+/- spiny projection neurons (Goodliffe et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:236310
This model achieves electrotonic transform and computes mean inward and outward attenuation from 0 to 500 Hz input; and randomly activates synapses along dendrites to simulate AMPAR mediated EPSCs. For electrotonic analysis, in Elec folder, the entry file is MSNelec_transform.hoc. For EPSC simulation, in Syn folder, the entry file is randomepsc.hoc. Run read_EPSCsims_mdb_alone.m next with the simulated parameter values specified to compute the mean EPSC.
Reference:
1 . Goodliffe JW, Song H, Rubakovic A, Chang W, Medalla M, Weaver CM, Luebke JI (2018) Differential changes to D1 and D2 medium spiny neurons in the 12-month-old Q175+/- mouse model of Huntington's Disease. PLoS One 13:e0200626 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Synapse;
Brain Region(s)/Organism: Striatum;
Cell Type(s): Neostriatum spiny neuron;
Channel(s):
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Membrane Properties; Electrotonus; Synaptic-input statistic;
Implementer(s):
Search NeuronDB for information about:  AMPA;
/
GoodliffeEtAl2018
Syn
tau_tables
bkkca.mod
cadyn.mod *
caL.mod
caL13.mod
caldyn.mod
can.mod
caq.mod *
car.mod
cat.mod
kaf.mod
kas.mod
kdr.mod
kir.mod *
krp.mod *
linearIclamp.mod
naf.mod
nap.mod
skkca.mod
stim.mod *
actionPotentialPlayer.hoc *
all_tau_vecs.hoc
analyticFunctions.hoc *
analyze_EPSC.m
aux_procs.hoc
baseline_values.txt
basic_procs.hoc
createFit_WTD1.m
electro_procs.hoc
fixnseg.hoc *
load_scripts.hoc
msp_template.hoc
PFC-V1_AddSynapses.hoc
PFC-V1_AddSynapses_fix.hoc
PFC-V1_AddSynapses_neg.hoc
PFC-V1_AddSynapses_negexp.hoc
plot_seClamp_i.ses
ran_test.hoc
randomepsc.hoc
ranstream.hoc
read_EPSCsims_mdb_alone.m
readcell.hoc
readNRNbin_Vclamp.m
                            
function [fitresult, gof] = createFit_WTD1(dist_WTD1, amp_WTD1)
%CREATEFIT(DIST_WTD1,AMP_WTD1)
%  Create a fit.
%
%  Data for 'untitled fit 1' fit:
%      X Input : dist_WTD1
%      Y Output: amp_WTD1
%  Output:
%      fitresult : a fit object representing the fit.
%      gof : structure with goodness-of fit info.
%
%  See also FIT, CFIT, SFIT.

%  Auto-generated by MATLAB on 12-Dec-2017 15:32:22


%% Fit: 'untitled fit 1'.
[xData, yData] = prepareCurveData( dist_WTD1, amp_WTD1 );

% Set up fittype and options.
ft = fittype( 'exp1' );
opts = fitoptions( 'Method', 'NonlinearLeastSquares' );
opts.Display = 'Off';
opts.Normalize = 'on';
opts.StartPoint = [0.0162312691731286 -0.225671213654268];

% Fit model to data.
[fitresult, gof] = fit( xData, yData, ft, opts );
size(fitresult)
size(xData)
size(yData)
figure(1)
% Plot fit with data.
% figure( 'Name', 'untitled fit 1' );
h = plot( fitresult, xData, yData );
xlim([0 350]);
ylim([0 0.018]);
legend( h, 'amp_WTD1 vs. dist_WTD1', 'untitled fit 1', 'Location', 'NorthEast' );
% Label axes
% xlabel dist_WTD1
% ylabel amp_WTD1
% grid on



Loading data, please wait...