Fast Spiking Basket cells (Tzilivaki et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:237595
"Interneurons are critical for the proper functioning of neural circuits. While often morphologically complex, dendritic integration and its role in neuronal output have been ignored for decades, treating interneurons as linear point neurons. Exciting new findings suggest that interneuron dendrites support complex, nonlinear computations: sublinear integration of EPSPs in the cerebellum, coupled to supralinear calcium accumulations and supralinear voltage integration in the hippocampus. These findings challenge the point neuron dogma and call for a new theory of interneuron arithmetic. Using detailed, biophysically constrained models, we predict that dendrites of FS basket cells in both hippocampus and mPFC come in two flavors: supralinear, supporting local sodium spikes within large-volume branches and sublinear, in small-volume branches. Synaptic activation of varying sets of these dendrites leads to somatic firing variability that cannot be explained by the point neuron reduction. Instead, a 2-stage Artificial Neural Network (ANN), with both sub- and supralinear hidden nodes, captures most of the variance. We propose that FS basket cells have substantially expanded computational capabilities sub-served by their non-linear dendrites and act as a 2-layer ANN."
Reference:
1 . Tzilivaki A, Kastellakis G, Poirazi P (2019) Challenging the point neuron dogma: FS basket cells as 2-stage nonlinear integrators Nature Communications 10(1):3664 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus; Prefrontal cortex (PFC);
Cell Type(s): Hippocampus CA3 interneuron basket GABA cell; Neocortex layer 5 interneuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; MATLAB; Python;
Model Concept(s): Active Dendrites; Detailed Neuronal Models;
Implementer(s): Tzilivaki, Alexandra [alexandra.tzilivaki at charite.de]; Kastellakis, George [gkastel at gmail.com];
Search NeuronDB for information about:  Hippocampus CA3 interneuron basket GABA cell;
/
TzilivakiEtal_FSBCs_model
Multicompartmental_Biophysical_models
mechanism
x86_64
ampa.mod *
ampain.mod *
cadyn.mod *
cadynin.mod *
cal.mod *
calc.mod *
calcb.mod *
can.mod *
cancr.mod *
canin.mod *
car.mod *
cat.mod *
catcb.mod *
cpampain.mod *
gabaa.mod *
gabaain.mod *
gabab.mod *
h.mod *
hcb.mod *
hin.mod *
ican.mod *
iccb.mod *
iccr.mod *
icin.mod *
iks.mod *
ikscb.mod *
ikscr.mod *
iksin.mod *
kadist.mod *
kadistcr.mod *
kadistin.mod *
kaprox.mod *
kaproxcb.mod *
kaproxin.mod *
kca.mod *
kcain.mod *
kct.mod *
kctin.mod *
kdr.mod *
kdrcb.mod *
kdrcr.mod *
kdrin.mod *
naf.mod *
nafcb.mod *
nafcr.mod *
nafin.mod *
nafx.mod *
nap.mod *
netstim.mod *
NMDA.mod *
NMDAIN.mod *
sinclamp.mod *
vecstim.mod *
                            
TITLE N-type calcium channel 
: used in somatic and dendritic regions 
: After Borg 
:  Updated by Maria Markaki  03/12/03

NEURON {
	SUFFIX canin
	USEION ca READ cai, eca WRITE ica 
        RANGE gcalbar, ica, po
	GLOBAL hinf, minf, s_inf
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) =	(millimolar)
	FARADAY = (faraday) (coulomb)
	R = (k-mole) (joule/degC)
}

PARAMETER {           :parameters that can be entered when function is called in cell-setup 
	gcalbar = 0   (mho/cm2)  : initialized conductance
  	ki     = 0.025  (mM)            :test middle point of inactivation fct
	zetam = -3.4
	zetah = 2
	vhalfm =-21 (mV)
	vhalfh =-40 (mV)
	tm0=1.5(ms)
	th0=75(ms)
	taumin  = 2    (ms)            : minimal value of the time cst
}



ASSIGNED {     : parameters needed to solve DE
	v            (mV)
	celsius      (degC)
	ica          (mA/cm2)
	po
	cai          (mM)       :5e-5 initial internal Ca++ concentration
	eca             (mV)
        minf
        hinf
	s_inf
}


FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}



STATE {	
	m 
	h 
	s
}  

INITIAL {
	rates(v,cai)
        m = minf
        h = hinf
	s = s_inf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	po = m*m*h
 	ica = gcalbar *po*h2(cai) * (v - eca)

}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (.001 coul/cm3) {
	LOCAL z, eci, eco
	z = (1e-3)*2*FARADAY*v/(R*(celsius+273.15))
	eco = co*efun(z)
	eci = ci*efun(-z)
	ghk = (.001)*2*FARADAY*(eci - eco)
}

FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

DERIVATIVE states {
	rates(v,cai)
	m' = (minf -m)/tm0
	h'=  (hinf - h)/th0
	s' = (s_inf-s)/taumin
}



PROCEDURE rates(v (mV), cai(mM)) { 
        LOCAL a, b, alpha2
        
	a = alpm(v)
	minf = 1/(1+a)
        
        b = alph(v)
	hinf = 1/(1+b)
	alpha2 = (ki/cai)^2
	s_inf = alpha2 / (alpha2 + 1)
}




FUNCTION alpm(v(mV)) {
UNITSOFF
  alpm = exp(1.e-3*zetam*(v-vhalfm)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alph(v(mV)) {
UNITSOFF
  alph = exp(1.e-3*zetah*(v-vhalfh)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}


Loading data, please wait...