Phase response theory in sparsely + strongly connected inhibitory NNs (Tikidji-Hamburyan et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:239177

Reference:
1 . Tikidji-Hamburyan RA, Leonik CA, Canavier CC (2019) Phase response theory explains cluster formation in sparsely but strongly connected inhibitory neural networks and effects of jitter due to sparse connectivity. J Neurophysiol 121:1125-1142 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Abstract single compartment conductance based cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s):
Implementer(s): Tikidji-Hamburyan, Ruben [ruben.tikidji.hamburyan at gmail.com] ;
#--------------------------------------------------------------------------------#
#--- This CONFIG File Automatically Generated by SIMMETHOD module of SIMTOOLS ---#
#---                   DATE and TIME: 2017-09-28, 09:50:33                   ---#
#--------------------------------------------------------------------------------#
/Parallel/MPI/RANK=1
/Parallel/MPI/SIZE=10
/Function/TrancatedGauss=lambda meanX, stdX, minX = 0.: next(x for x in (meanX + random.randn() * stdX for _ in iter(int, 1)) if x > minX)
/Simulation/step=0.01
/Simulation/stop=1000
/Simulation/cvode=False
/Parallel/cores/desktop=4
/Parallel/cores/neadnode=8
/Parallel/cores/compute=32
/Parallel/cores/autodetect=True
/Parallel/cores/number=4
/ATotalCell=1400
/Populations/E/n=1120
/Populations/E/model="from ECellOlufsen import Py as NeuronE"
/Populations/E/modelname="NeuronE"
/Populations/E/init=None
/Populations/E/DB>>/vinit=False
/Populations/E/record/v="soma(0.5)._ref_v"
/Populations/E/record/ei="esyn._ref_i"
/Populations/E/record/eg="esyn._ref_g"
/Populations/E/record/ii="isyn._ref_i"
/Populations/E/record/ig="isyn._ref_g"
/Populations/I/n=280
/Populations/I/model="from HHinh import In as NeuronI"
/Populations/I/modelname="NeuronI"
/Populations/I/init=None
/Populations/I/record/v="soma(0.5)._ref_v"
/Populations/I/record/ei="esyn._ref_i"
/Populations/I/record/eg="esyn._ref_g"
/Populations/I/record/ii="isyn._ref_i"
/Populations/I/record/ig="isyn._ref_g"
/Populations/S/SperE=1
/Populations/S/n=1120
/Populations/S/DistMean=1
/Populations/S/spikesource=lambda i, tpre: tpre+random.exponential(scale=@/Populations/S/DistMean@)
/Populations/S/model="from SGen import Sg as NeuronS"
/Populations/S/modelname="NeuronS"
/Populations/S/init=zip( range(@/Populations/S/n@), random.random(@/Populations/S/n@)*100. )
/Populations/S/activate=[ getspikesequence(sid, start, @/Simulation/stop@, @/Populations/S/spikesource@) for sid,start in enumerate(random.random(@/Populations/S/n@)*100.) ]
/Connections/EE/Type="E"
/Connections/EE/source="E"
/Connections/EE/destination="E"
/Connections/EE/synapse="esyn"
/Connections/EE/P=0.0142857142857
/Connections/EE/P-func=lambda x,y:False
/Connections/EE/gmax-mean=2e-05
/Connections/EE/gmax-stdr=0.0
/Connections/EE/gmax-func=lambda pre, post:@/Function/TrancatedGauss@(@/Connections/EE/gmax-mean@, @/Connections/EE/gmax-stdr@,  0.)
/Connections/EE/delay-mean=1.3
/Connections/EE/delay-stdr=0.0
/Connections/EE/delay-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/EE/delay-mean$, $/Connections/EE/delay-stdr$, 0.3)
/Connections/EI/Type="E"
/Connections/EI/source="E"
/Connections/EI/destination="I"
/Connections/EI/synapse="esyn"
/Connections/EI/P=0.08
/Connections/EI/P-func=lambda pre, post: random.rand() < @/Connections/EI/P@
/Connections/EI/gmax-mean=6.5e-06
/Connections/EI/gmax-stdr=0.0
/Connections/EI/gmax-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/EI/gmax-mean$, $/Connections/EI/gmax-stdr$,  0.)
/Connections/EI/delay-mean=1.3
/Connections/EI/delay-stdr=0.0
/Connections/EI/delay-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/EI/delay-mean$, $/Connections/EI/delay-stdr$, 0.3)
/Connections/IE/Type="I"
/Connections/IE/source="I"
/Connections/IE/destination="E"
/Connections/IE/synapse="isyn"
/Connections/IE/P=0.0571428571429
/Connections/IE/P-func=lambda pre, post: random.rand() < @/Connections/IE/P@
/Connections/IE/gmax-mean=5e-05
/Connections/IE/gmax-stdr=0.0
/Connections/IE/gmax-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/IE/gmax-mean$, $/Connections/IE/gmax-stdr$,  0.)
/Connections/IE/delay-mean=1.3
/Connections/IE/delay-stdr=0.0
/Connections/IE/delay-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/IE/delay-mean$, $/Connections/IE/delay-stdr$, 0.3)
/Connections/II/Type="I"
/Connections/II/source="I"
/Connections/II/destination="I"
/Connections/II/synapse="isyn"
/Connections/II/P=0.14285714285714285
/Connections/II/P-func=lambda pre, post: random.rand() < @/Connections/II/P@ and post != pre
/Connections/II/gmax-mean=3.2e-05
/Connections/II/gmax-stdr=0.0
/Connections/II/gmax-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/II/gmax-mean$, $/Connections/II/gmax-stdr$,  0.)
/Connections/II/delay-mean=2.2
/Connections/II/delay-stdr=0.0
/Connections/II/delay-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/II/delay-mean$, $/Connections/II/delay-stdr$, 0.3)
/Connections/SE/Type="E"
/Connections/SE/source="S"
/Connections/SE/destination="E"
/Connections/SE/synapse="esyn"
/Connections/SE/P-func=lambda pre, post: pre%@/Populations/E/n@ == post
/Connections/SE/gmax-mean=1.5e-05
/Connections/SE/gmax-stdr=0.0
/Connections/SE/gmax-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/SE/gmax-mean$, $/Connections/SE/gmax-stdr$,  0.)
/Connections/SE/delay-mean=1.3
/Connections/SE/delay-stdr=0.0
/Connections/SE/delay-func=lambda pre, post:@/Function/TrancatedGauss@($/Connections/SE/delay-mean$, $/Connections/SE/delay-stdr$, 0.3)
/Populations/E/E-Scaling=False
/Populations/E/I-Scaling=False
/Populations/I/E-Scaling=False
/Populations/I/I-Scaling=False
/Populations/E/E2I-Balance-Scaler=1.5
/Populations/I/E2I-Balance-Scaler=1.0
/Populations/E/E2I-Balance=False
/Populations/I/E2I-Balance=False
/Populations/E/E2I-Balance-Conductance=False
/Populations/I/E2I-Balance-Conductance=False
/Analysis/Presim/connectome = True
/Analysis/Postsim/E/PeakDetector/binsize=1.0
/Analysis/Postsim/E/PeakDetector/kernel=5.0
/Analysis/Postsim/E/PeakDetector/window=25
/Analysis/Postsim/E/PeakDetector/pure=False
/Analysis/Postsim/E/R2=True
/Analysis/Postsim/E/Against=None
/Analysis/Postsim/I/PeakDetector/binsize=1.0
/Analysis/Postsim/I/PeakDetector/kernel=5.0
/Analysis/Postsim/I/PeakDetector/window=25
/Analysis/Postsim/I/PeakDetector/pure=False
/Analysis/Postsim/I/R2=True
/Analysis/Postsim/I/Against=None
/Analysis/Postsim/S/PeakDetector/binsize=1.0
/Analysis/Postsim/S/PeakDetector/kernel=5.0
/Analysis/Postsim/S/PeakDetector/window=25
/Analysis/Postsim/S/PeakDetector/pure=False
/Analysis/Postsim/S/R2=True
/Analysis/Postsim/S/Against=None
/Analysis/Postsim/E/TaS=False
/Analysis/Postsim/I/TaS=False
/Analysis/Postsim/S/TaS=False
/Analysis/Postsim/E/MeanFiringRate=True
/Analysis/Postsim/I/MeanFiringRate=True
/Analysis/Postsim/S/MeanFiringRate=True
/Analysis/Postsim/E/AsymmetryDetector=True
/Analysis/Postsim/I/AsymmetryDetector=True
/Analysis/Postsim/E/Balance=False
/Analysis/Postsim/I/Balance=False
/GUI=True
/Debug/print/methods=True
/Debug/check/condisfun=False
/Debug/print/connectome=False
/Debug/check/balance=False
/Debug/check/sourcedist=False
/Debug/print/netcons=False
/CONFIG/simdb=None
/CONFIG/config=False
/Simulation/norun=False
#--------------------------------------------------------------------------------#

Loading data, please wait...