Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:240116
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
References:
1 . Cavarretta F, Burton SD, Igarashi KM, Shepherd GM, Hines ML, Migliore M (2018) Parallel odor processing by mitral and middle tufted cells in the olfactory bulb. Sci Rep 8:7625 [PubMed]
2 . Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M (2016) Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 10:67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main interneuron granule TC GABA cell; Olfactory bulb (accessory) mitral cell; Olfactory bulb main tufted cell external; Olfactory bulb short axon cell;
Channel(s): I A; I Na,t; I_Ks; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; GabaA; NMDA;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Action Potential Initiation; Active Dendrites; Long-term Synaptic Plasticity; Synaptic Integration; Synchronization; Pattern Recognition; Spatio-temporal Activity Patterns; Temporal Pattern Generation; Sensory coding; Sensory processing; Olfaction;
Implementer(s): Cavarretta, Francesco [francescocavarretta at hotmail.it]; Hines, Michael [Michael.Hines at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main interneuron granule MC GABA cell; Olfactory bulb main tufted middle GLU cell; Olfactory bulb main interneuron granule TC GABA cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I_Ks; Gaba; Glutamate;
/
modeldb-bulb3d
vis
bulbdef.py
bulbdict.py
bulbgui.py
bulbvis.py
cellreader.py
cellwriter.py
cfg27.py
dummysyns.txt
Eta.txt *
firing.py
geodist.py
geodist.txt
ggid2type.txt
gidfunc.py
glomdist.py
granules.py
granules.txt
graphmeat.py
growdef.py *
ipsc.py
ispkdata.py
Kod.txt *
misc.py
Nod.txt *
odors.py
odstim2.txt *
pad.txt *
realgloms.txt *
spikes.py
spikesreader.py
spk2gd.py
spk2weight.py
spkgraph.py
winflag.txt
                            
from bulbdef import *

ggid2pos = {}
pos2ggid = {}


#def init(gid_begin):
#
#  # make a list of available granule cells
#  from misc import Ellipsoid
#  from math import exp
#  
#  radius = gran_connect_radius
#  
#  ggid2pos.clear()
#  pos2ggid.clear()
#  up = Ellipsoid(bulb_center, gran_bnd_up)
#  dw = Ellipsoid(bulb_center, gran_bnd_dw)
#  
#  d = gran_voxel
#center = bulb_center
#  upbnd = gran_bnd_up
#  gindex = 0
#  for x in range(int((center[0]-upbnd[0]/2)/d)*d-d, int((center[0]+upbnd[0]/2)/d)*d+d+d, d):
#    for y in range(int((center[1]-upbnd[1]/2)/d)*d-d, int((center[1]+upbnd[1]/2)/d)*d+d+d, d):
#      for z in range(int((center[2]-upbnd[2]/2)/d)*d-d, int((center[2]+upbnd[2]/2)/d)*d+d+d, d):
#        
#        p =(x, y, z)
#        if up.normalRadius(p) < 1.0 and dw.normalRadius(p) >= 1.0: # inside boundaries
#          ggid = gid_begin+gindex
#              
#          ggid2pos.update({ ggid:p })
#          pos2ggid.update({ p:ggid })
#          
#          gindex += 1
          



def init():
  with open('granules.txt', 'r') as fi:
    line = fi.readline()
    while line:
      token = line.split()
      gid = int(token[0])
      pos = (float(token[1]), float(token[2]), float(token[3]))
      ggid2pos.update({ gid:pos })
      pos2ggid.update({ pos:gid })
      line = fi.readline()

Loading data, please wait...