Voltage- and Branch-specific Climbing Fiber Responses in Purkinje Cells (Zang et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:243446
"Climbing fibers (CFs) provide instructive signals driving cerebellar learning, but mechanisms causing the variable CF responses in Purkinje cells (PCs) are not fully understood. Using a new experimentally validated PC model, we unveil the ionic mechanisms underlying CF-evoked distinct spike waveforms on different parts of the PC. We demonstrate that voltage can gate both the amplitude and the spatial range of CF-evoked Ca2+ influx by the availability of K+ currents. ... The voltage- and branch-specific CF responses can increase dendritic computational capacity and enable PCs to actively integrate CF signals."
Reference:
1 . Zang Y, Dieudonné S, De Schutter E (2018) Voltage- and Branch-Specific Climbing Fiber Responses in Purkinje Cells Cell Reports 24(6):1536-1549 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): Ca pump; I K; I K,Ca; I Na,p; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Active Dendrites; Synaptic Integration; Dendritic Action Potentials; Detailed Neuronal Models;
Implementer(s): Zang, Yunliang ;
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I Na,p; I K; I h; I K,Ca; Ca pump;
// present version
load_file("nrngui.hoc")

Default_Eleak = -65
membranecap = 0.64      	/* specific membrane capacitance in uF cm^-2 */
membraneresist = 120236 	/* specific membrane resistance in ohm cm^2 */
axialresist = 120	     	/* axial resistivity in ohm cm */

	xopen("Purkinje19b972-1.nrn")	// Load the morphology file.
	forsec "axon" delete_section()	// Delete original axon and add a fake AIS

objref g2, b2,c2, distrx, distry, cdistry, p

	forall {
		insert pas e_pas=Default_Eleak	/* Insert Leak everywhere */
	    insert hpkj	// Ih inserted everywhere
		insert ds
		insert pk
	}

    AIS {  g_pas=1/membraneresist Ra=axialresist cm=membranecap}
	forsec spinydend {g_pas=5.3/membraneresist Ra=axialresist cm=5.3*membranecap}
    forsec maindend {g_pas=1.2/membraneresist Ra=axialresist cm=1.2*membranecap}
	forsec "soma" { g_pas=1/membraneresist Ra=axialresist cm=membranecap}

forsec maindend {insert cdp4N}
forsec alldend {
    insert Kv3
    gbar_Kv3 = 0.4536/2/1.5
    vshift_Kv3 = 4
    insert newCaP
    pcabar_newCaP = 0.95e-4*2
    vshift_newCaP =-5
    insert CaT3_1
    pcabar_CaT3_1 = 5.4e-6*5

    insert mslo
    gbar_mslo = 0.2688*0.4*2
    insert SK2
    gkbar_SK2 = 2.4000e-04*1.5
    scal_SK2 = 1.0
    ghbar_hpkj = 3.6e-4*0.6
	insert Kv1
	gbar_Kv1 = 0.002
	insert Kv4
	 gbar_Kv4 = 0.012*3*0.7
    insert Kv4s
    gbar_Kv4s = 0.015

}
forsec spinydend {
	insert cdp4Nsp
    gkbar_SK2 = 2.4000e-04*1.5
    
    scal_SK2 = 1.0
gbar_Kv4 = 0.012*2.2
    gbar_Kv4s = 0.015
    ghbar_hpkj = 3.6e-4*0.9
    vshift_Kv4 = 0
    gbar_Kv1 = 0.001
    gbar_Kv3 =0.1512*1.5
    vshift_Kv3 = 4
    pcabar_CaT3_1 = 5.4e-5*2
    pcabar_newCaP = 0.95e-4*2*4
    vshift_newCaP = -5
    scale_cdp4Nsp = 3.5
    gbar_mslo = 0.0448
}


somaA distance(0,1)
access somaA

forsec "soma" {	
	insert naRsg
	gbar_naRsg =0.024*1.2*1.1
	vshifta_naRsg = 0
    vshiftk_naRsg = 0
    vshifti_naRsg = -5
    
	insert nap
	gbar_nap = 0.0001*2*0.7
	insert pk
	ena = 63
    ghbar_hpkj = 3.6e-4*0.3

    insert cdp20N_FD2

    insert Kv3
    gbar_Kv3 =0.3*0.75*2*2*2
    vshift_Kv3 = 4
    insert newCaP
    pcabar_newCaP = 0.95e-4*2
    kt_newCaP = 1
    vshift_newCaP = -5
    insert mslo
    gbar_mslo = 0.8736
    insert abBK
    gabkbar_abBK = 0.3
    insert SK2
    gkbar_SK2 = 0.015/3*1.5
}

AIS {
    	insert naRsg
	gbar_naRsg = 0.8*0.7
	vshifta_naRsg = 15
	vshiftk_naRsg = 5
   vshifti_naRsg = -5
	insert nap
	gbar_nap = 0.0023
	insert CaT3_1
	pcabar_CaT3_1 = 6.4e-5*2
	ena = 63
    ghbar_hpkj = 3.6e-4*0.3
   insert cdpAIS

    insert Kv3
    gbar_Kv3 =0.3*6*2*2*2*4*2
    vshift_Kv3 = 4
    insert newCaP
    pcabar_newCaP = 0.95e-4*24
    kt_newCaP = 1
    vshift_newCaP = -5
    insert mslo
    gbar_mslo = 3*2
    insert abBK
    gabkbar_abBK = 1.5*0.7
    insert SK2
    gkbar_SK2 = 0.02/1.8*2.5
}

access somaA

xopen("dendv_arnd21.ses")

celsius = 34
dt = 0.02
steps_per_ms = 1/dt
dtsim = 0.02

xopen ("electrode.hoc")
xopen("distri.hoc")

stim1.amp =1.06*0
stim1.del = 200-200
stim1.dur =50000000000000
v_init = -65-3

// simple spike energy consumtion

tstop = 500
cfstart = 400

finitialize(v_init)

for i=0,synlist.count()-1 {
    synlist.object(i).onset = cfstart
    synlist.object(i).gmax = 1.2251821e-3
    synlist.object(i).tau0 = 0.3
    synlist.object(i).tau1 = 3
}

startsw()
continuerun(tstop)		// This is "run()" without the "init()"
stopsw()


Loading data, please wait...