CA1 pyramidal neuron (Combe et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:244416
"Gamma oscillations are thought to play a role in learning and memory. Two distinct bands, slow (25-50 Hz) and fast (65-100 Hz) gamma, have been identified in area CA1 of the rodent hippocampus. Slow gamma is phase-locked to activity in area CA3 and presumably driven by the Schaffer collaterals. We used a combination of computational modeling and in vitro electrophysiology in hippocampal slices of male rats to test whether CA1 neurons responded to Schaffer collateral stimulation selectively at slow gamma frequencies, and to identify the mechanisms involved. Both approaches demonstrated that in response to temporally precise input at Schaffer collaterals, CA1 pyramidal neurons fire preferentially in the slow gamma range regardless of whether the input is at fast or slow gamma frequencies, suggesting frequency selectivity in CA1 output with respect to CA3 input. In addition, phase-locking, assessed by the vector strength, was more precise for slow gamma than fast gamma input. ..."
Reference:
1 . Combe CL, Canavier CC, Gasparini S (2018) Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons. J Neurosci 38:8110-8127 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Gamma oscillations;
Implementer(s): Canavier, CC;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
/
CombeEtAl2018
template
BasalPath.hoc *
ObliquePath.hoc *
                            
// This template creates the Basal Path lists, starting from the
// section attached to the trunk and ending with the basal tip section 
// written by Terrence Brannon, modified by Yiota Poirazi, July 2001, poirazi@LNC.usc.edu

begintemplate ObliquePath

public dtrunk_to_tip, trunk_section, root_oblique

strdef sexec

objref trunk_section
strdef trunk_section_name

objref root_oblique
strdef root_oblique_name

objref tip_section
strdef tip_section_name

objref oblique_path

proc init () {
  sec_count=0

  forsec $o1 {

    if (sec_count==1) {
       root_oblique    = new SectionRef()
       root_oblique_name=secname()
    }
      
    if (!sec_count) {
       distance(0,1)
       trunk_section  = new SectionRef()
       trunk_section_name=secname()
      }
    sec_count=sec_count+1

    tip_section    = new SectionRef()
    tip_section_name=secname()
  }

  access root_oblique.sec
  distance(0,0)
  access tip_section.sec
  dtrunk_to_tip=distance(1,1)

//  printf("ObliquePath trunk_section: %s root_oblique: %s tip_section: %s distance between root_oblique and tip_section: %g\n", trunk_section_name, root_oblique_name, tip_section_name, dtrunk_to_tip)
}

endtemplate ObliquePath

Loading data, please wait...