Gamma genesis in the basolateral amygdala (Feng et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:247968
Using in vitro and in vivo data we develop the first large-scale biophysically and anatomically realistic model of the basolateral amygdala nucleus (BL), which reproduces the dynamics of the in vivo local field potential (LFP). Significantly, it predicts that BL intrinsically generates the transient gamma oscillations observed in vivo. The model permitted exploration of the poorly understood synaptic mechanisms underlying gamma genesis in BL, and the model's ability to compute LFPs at arbitrary numbers of recording sites provided insights into the characteristics of the spatial properties of gamma bursts. Furthermore, we show how gamma synchronizes principal cells to overcome their low firing rates while simultaneously promoting competition, potentially impacting their afferent selectivity and efferent drive, and thus emotional behavior.
Reference:
1 . Feng F, Headley DB , Amir A, Kanta V, Chen Z, Pare D, Nair S (2019) Gamma oscillations in the basolateral amygdala: biophysical mechanisms and computational consequences eNeuro
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Extracellular; Synapse; Dendrite; Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Amygdala;
Cell Type(s): Hodgkin-Huxley neuron;
Channel(s): I Na,t; I L high threshold; I A; I M; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; I h; I Na,p; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; NMDA; Gaba; Dopaminergic Receptor;
Gene(s):
Transmitter(s): Dopamine; Norephinephrine;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Gamma oscillations; Short-term Synaptic Plasticity;
Implementer(s): Feng, Feng [ffvxb at mail.missouri.edu];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; Dopaminergic Receptor; I Na,p; I Na,t; I L high threshold; I A; I K; I M; I h; I Sodium; I Calcium; I Potassium; I_AHP; Ca pump; Dopamine; Norephinephrine;
/
FengEtAl2019
input
LFPs
volts
readme.txt
bg2pyr.mod
ca.mod *
cadyn.mod *
cal2.mod *
capool.mod
function_TMonitor.mod *
gap.mod *
Gfluct_new_exc.mod
Gfluct_new_inh.mod
h.mod *
halfgap.mod
im.mod *
interD2interD_STFD_new.mod
interD2pyrD_STFD_new.mod
kadist.mod
kaprox.mod *
kdrca1.mod *
kdrca1DA.mod *
kdrinter.mod *
leak.mod *
leakDA.mod *
leakinter.mod *
na3.mod *
na3DA.mod *
nainter.mod *
nap.mod *
nat.mod *
pyrD2interD_STFD.mod
pyrD2pyrD_STFD_new.mod
sahp.mod *
sahpNE.mod *
vecevent.mod
xtra.mod
xtra_imemrec.mod
BL_main.hoc
BLcells_template_LFP_segconsider_all_Iinject_recordingimembrane.hoc
function_calcconduc.hoc
function_ConnectInputs_invivo_op.hoc
function_ConnectInternal_gj_simplify.hoc
function_ConnectInternal_simplify_online_op.hoc
function_ConnectTwoCells.hoc
function_LoadMatrix.hoc
function_NetStimOR.hoc *
function_TimeMonitor.hoc *
interneuron_template_gj_LFP_Iinject_recordingimembrane.hoc
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {

	tone_period = 4000    
	DA_period = 500	
	DA_start = 64000		             : D1R(Low Affinity) Dopamine Effect after 6 conditioning trials (15*4000) = 60000)
	DA_stop = 96000
	DA_ext1 = 196000
	DA_ext2 = 212000	
	
	DA_t1 = 0.95 : 0.9 : 1 :  1 : 0.9           : Amount(%) of DA effect- negative value decreases AP threshold / positive value increases threshold of AP
	DA_period2 = 100
	DA_start2 = 36000		   			: shock Dopamine Effect during shock after 1 conditioning trial
	DA_t2 = .8           				: Amount(%) of DA effect- negative value decreases AP threshold / positive value increases threshold of AP	

	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gbar=.003 (mho/cm2)
        vhalfn = -15: 13 : -25  : -20  (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	qt=1
}


NEURON {
	SUFFIX kdrDA
	USEION k READ ek WRITE ik
        RANGE gkdr, i, gbar
	RANGE ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
	i  (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gbar*n
	ik = gkdr*(v-ek)*DA1(t)*DA2(t)
	i = ik

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*(-3)*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*(-3)*(0.7)*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a
        a = alpn(v)
		if (v < -55 ) {              ::::::::::::::::::::   -55
		ninf = 0
		} else{
		ninf = 1 / ( 1 + exp( ( vhalfn - v ) / 11 ) )
		:ninf = 1 / ( 1 + exp( ( - v + 13 ) / 8.738 ) )
        }
		taun = betn(v)/(qt*(0.02)*(1+a))
	if (taun<nmax) {taun=nmax}
}


FUNCTION DA1(t) {
	    if (t >= DA_start && t <= DA_stop){ 									: During conditioning
			if ((t/tone_period-floor(t/tone_period)) >= (1-DA_period/tone_period)) {DA1 = DA_t1}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA1 = DA_t1}
			else {DA1 = 1}}
		else if (t >= DA_ext1 && t <= DA_ext2){								: During 4trials of Extinction
			if ((t/tone_period-floor(t/tone_period)) >= (1-DA_period/tone_period)) {DA1 = DA_t1}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA1 = DA_t1}
			else {DA1 = 1}}		
		else  {DA1 = 1}
	}
FUNCTION DA2(t) {
	    if (t >= DA_start2 && t <= DA_stop){
			if((t/tone_period-floor(t/tone_period)) >= (1-DA_period2/tone_period)) {DA2 = DA_t2}
			else if ((t/tone_period-floor(t/tone_period)) == 0) {DA2 = DA_t2}
			else  {DA2 = 1}}
		else  {DA2 = 1}
	}

Loading data, please wait...