Olfactory Bulb Network (Davison et al 2003)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:2730
A biologically-detailed model of the mammalian olfactory bulb, incorporating the mitral and granule cells and the dendrodendritic synapses between them. The results of simulation experiments with electrical stimulation agree closely in most details with published experimental data. The model predicts that the time course of dendrodendritic inhibition is dependent on the network connectivity as well as on the intrinsic parameters of the synapses. In response to simulated odor stimulation, strongly activated mitral cells tend to suppress neighboring cells, the mitral cells readily synchronize their firing, and increasing the stimulus intensity increases the degree of synchronization. For more details, see the reference below.
Reference:
1 . Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:1921-35 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Synchronization; Spatio-temporal Activity Patterns; Olfaction;
Implementer(s): Davison, Andrew [Andrew.Davison at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I A; I K; I K,leak; I M; I K,Ca; I Sodium; I Calcium; I Potassium; Gaba; Glutamate;
/
bulbNet
README *
cadecay.mod *
flushf.mod *
kA.mod *
kca.mod *
kfasttab.mod *
kM.mod *
kslowtab.mod *
lcafixed.mod *
nafast.mod *
nagran.mod *
nmdanet.mod *
bulb.hoc
calcisilag.hoc *
ddi_baseline.gnu *
ddi_baseline.ses *
experiment_ddi_baseline.hoc *
experiment_odour_baseline.hoc *
granule.tem *
init.hoc *
input.hoc *
input1 *
mathslib.hoc *
mitral.tem *
mosinit.hoc *
odour_baseline.connect
odour_baseline.gnu *
odour_baseline.ses *
parameters_ddi_baseline.hoc *
parameters_odour_baseline.hoc *
screenshot.png *
tabchannels.dat *
tabchannels.hoc *
                            
TITLE Calcium decay
: as described in Bhalla and Bower, J. Neurophysiol. 69:1948-1983 (1993)
: Andrew Davison, The Babraham Institute, 1998
: partially based on cadecay.mod by Alain Destexhe, Salk Institute 1995.

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms) }

NEURON{
	SUFFIX cad
	USEION ca READ ica, cai WRITE cai
	RANGE ica, channel_flow, depth, B
	GLOBAL cai, tau, cainf
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
	(um) = (micron)
}

CONSTANT {
        FARADAY = 96154 (coul)
	:FARADAY = 93149 (coul)		: moles do not appear in units
					: note this value is chosen to fit with
					: Genesis
}

PARAMETER {
	dt (ms)
	depth = 1 	(um)		: shell within which cai is calculated
					: to match Bhalla and Bower 1993 set
					: depth = diam/4 for each compartment
	tau = 10 	(ms)		: cai decay constant
	cainf = 1e-5	(mM)		: baseline calcium concentration
	ica		(mA/cm2)
}

STATE {
	cai		(mM)
}

INITIAL {
	cai = cainf
}

ASSIGNED {
	channel_flow	(mM/ms)
	B		(mM cm2/ms/mA)
}

BREAKPOINT {
	SOLVE state METHOD cnexp
}

DERIVATIVE state {
	B = -(1e4)/(2*FARADAY*depth)
	channel_flow = B*ica
	if (channel_flow <= 0.0 ) { channel_flow = 0.0 }	: one way flow in channel
	cai' = channel_flow  - (cai - cainf)/tau
}
	






Loading data, please wait...