Olfactory Mitral Cell (Bhalla, Bower 1993)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:2733
This is a conversion to NEURON of the mitral cell model described in Bhalla and Bower (1993). The original model was written in GENESIS and is available by joining BABEL, the GENESIS users' group here http://www.genesis-sim.org/GENESIS/babel.html
Reference:
1 . Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral cell;
Channel(s): I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Parameter Fitting; Influence of Dendritic Geometry; Detailed Neuronal Models;
Implementer(s): Davison, Andrew [Andrew.Davison at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; I Na,t; I L high threshold; I A; I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Potassium;
/
bbmit
README
cadecay.mod *
kA.mod *
kca3.mod *
kfasttab.mod
kslowtab.mod *
lcafixed.mod *
nafast.mod *
fig5a.dat
kfast_k.inf *
kfast_k.tau *
kfast_n.inf *
kfast_n.tau *
kslow_k.inf *
kslow_k.tau *
kslow_n.inf *
kslow_n.tau *
mit_init.hoc
mit_memb.hoc
mit_morph.hoc
mit_param.hoc
mitral.connect
mitral.ses
mitral.xyzd
mosinit.hoc
                            
This is a conversion to NEURON of the mitral cell model described in: 

Bhalla US and Bower JM. (1993) Exploring parameter space in detailed single
neuron models: simulations of the mitral and granule cells of the olfactory bulb. 
J. Neurophysiol. 69:1948-1965. 

The original model was written in GENESIS and is available from:
http://www.bbb.caltech.edu/BABEL/babeldirs/cells/mitral_granule/

Running the model (by executing mosinit.hoc) runs a simulation comparable
to Figure 5A. The GENESIS trace is also shown for comparison. 

There are some small discrepancies between the results from the NEURON and
GENESIS versions. I believe these are due to numerical differences, but it is 
possible they are due to bugs in my code.

For more information on this conversion contact Andrew.Davison@iaf.cnrs-gif.fr
For more information on the original model contact U.S. Bhalla or J.M. Bower

Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65[PubMed]

References and models cited by this paper

References and models that cite this paper

Adams DJ, Smith SJ, Thompson SH (1980) Ionic currents in molluscan soma. Annu Rev Neurosci 3:141-67 [PubMed]

Aldrich RW, Getting PA, Thompson SH (1979) Inactivation of delayed outward current in molluscan neurone somata. J Physiol 291:507-30 [PubMed]

Anton PS, Lynch G, Granger R (1991) Computation of frequency-to-spatial transform by olfactory bulb glomeruli. Biol Cybern 65:407-14 [PubMed]

Belluzzi O, Sacchi O (1991) A five-conductance model of the action potential in the rat sympathetic neurone. Prog Biophys Mol Biol 55:1-30 [PubMed]

Bhalla US, Bilitch DH, Bower JM (1992) Rallpacks: a set of benchmarks for neuronal simulators. Trends Neurosci 15:453-8 [PubMed]

Bower JM, Koch C (1992) Experimentalists and modelers: can we all just get along? Trends Neurosci 15:458-61 [PubMed]

Bufler J, Zufall F, Franke C, Hatt H (1992) Patch-clamp recordings of spiking and nonspiking interneurons from rabbit olfactory bulb slices: membrane properties and ionic currents. J Comp Physiol [A] 170:145-52 [PubMed]

Connor JA, Stevens CF (1971) Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J Physiol 213:31-53 [PubMed]

Cooley JW, Dodge FA (1966) Digital computer solutions for excitation and propagation of the nerve impulse. Biophys J 6:583-99 [PubMed]

Egan TM, Dagan D, Kupper J, Levitan IB (1992) Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci 12:1964-76 [PubMed]

Greer CA (1987) Golgi analyses of dendritic organization among denervated olfactory bulb granule cells. J Comp Neurol 257:442-52 [PubMed]

Haberly LB, Price JL (1977) The axonal projection patterns of the mitral and tufted cells of the olfactory bulb in the rat. Brain Res 129:152-7 [PubMed]

Hines M (1984) Efficient computation of branched nerve equations. Int J Biomed Comput 15:69-76 [PubMed]

Hirano T, Hagiwara S (1989) Kinetics and distribution of voltage-gated Ca, Na and K channels on the somata of rat cerebellar Purkinje cells. Pflugers Arch 413:463-9 [PubMed]

Jahr CE, Nicoll RA (1982) An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J Physiol 326:213-34 [PubMed]

Li Z, Hopfield JJ (1989) Modeling the olfactory bulb and its neural oscillatory processings. Biol Cybern 61:379-92 [PubMed]

Manor Y, Gonczarowski J, Segev I (1991) Propagation of action potentials along complex axonal trees. Model and implementation. Biophys J 60:1411-23 [PubMed]

Meredith M (1992) Neural circuit computation: complex patterns in the olfactory bulb. Brain Res Bull 29:111-7 [PubMed]

Mori K (1987) Membrane and synaptic properties of identified neurons in the olfactory bulb. Prog Neurobiol 29:275-320 [PubMed]

Mori K, Kishi K (1982) The morphology and physiology of the granule cells in the rabbit olfactory bulb revealed by intracellular recording and HRP injection. Brain Res 247:129-33 [PubMed]

Mori K, Kishi K, Ojima H (1983) Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb. J Comp Neurol 219:339-55 [PubMed]

Mori K, Nowycky MC, Shepherd GM (1981) Analysis of synaptic potentials in mitral cells in the isolated turtle olfactory bulb. J Physiol 314:295-309 [PubMed]

Mori K, Nowycky MC, Shepherd GM (1982) Impulse activity in presynaptic dendrites: analysis of mitral cells in the isolated turtle olfactory bulb. J Neurosci 2:497-502 [PubMed]

Mori K, Takagi SF (1975) Spike generation in the mitral cell dendrite of the rabbit olfactory bulb. Brain Res 100:685-9 [PubMed]

Mori K, Takagi SF (1978) An intracellular study of dendrodendritic inhibitory synapses on mitral cells in the rabbit olfactory bulb. J Physiol 279:569-88 [PubMed]

Pongracz F, Firestein S, Shepherd GM (1991) Electrotonic structure of olfactory sensory neurons analyzed by intracellular and whole cell patch techniques. J Neurophysiol 65:747-58 [Journal] [PubMed]

Price JL, Powell TP (1970) The mitral and short axon cells of the olfactory bulb. J Cell Sci 7:631-51 [PubMed]

Price JL, Powell TP (1970) The morphology of the granule cells of the olfactory bulb. J Cell Sci 7:91-123 [PubMed]

Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9:1483-508 [PubMed]

Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648-87 [PubMed]

Rall W, Shepherd GM (1968) Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. J Neurophysiol 31:884-915 [Journal] [PubMed]

   Theoretical reconstrucion of field potentials and dendrodendritic synaptic...(Rall & Shepherd 1968) [Model]

Rall W, Shepherd GM, Reese TS, Brightman MW (1966) Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol 14:44-56 [PubMed]

Schild D, Riedel H (1992) Significance of glomerular compartmentalization for olfactory coding. Biophys J 61:704-15 [PubMed]

Schwartzkroin PA (1978) Secondary range rhythmic spiking in hippocampal neurons. Brain Res 149:247-50 [PubMed]

Segev I, Fleshman JW, Burke RE (1990) Computer simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons. J Neurophysiol 64:648-60 [Journal] [PubMed]

Shepherd GM, Brayton RK (1987) Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience 21:151-65 [Journal] [PubMed]

Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346-58 [Journal] [PubMed]

Stuhmer W, Methfessel C, Sakmann B, Noda M, Numa S (1987) Patch clamp characterization of sodium channels expressed from rat brain cDNA. Eur Biophys J 14:131-8 [PubMed]

Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience 7:1233-42 [PubMed]

Traub RD, Llinas R (1979) Hippocampal pyramidal cells: significance of dendritic ionic conductances for neuronal function and epileptogenesis. J Neurophysiol 42:476-96 [Journal] [PubMed]

Trombley PQ, Shepherd GM (1992) Noradrenergic inhibition of synaptic transmission between mitral and granule cells in mammalian olfactory bulb cultures. J Neurosci 12:3985-91 [PubMed]

Wellis DP, Scott JW (1990) Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation. J Neurophysiol 64:932-47 [Journal] [PubMed]

Wellis DP, Scott JW, Harrison TA (1989) Discrimination among odorants by single neurons of the rat olfactory bulb. J Neurophysiol 61:1161-77 [Journal] [PubMed]

White J, Hamilton KA, Neff SR, Kauer JS (1992) Emergent properties of odor information coding in a representational model of the salamander olfactory bulb. J Neurosci 12:1772-80 [PubMed]

Wilson M, Bower JM (1992) Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. J Neurophysiol 67:981-95 [Journal] [PubMed]

   Simulations of oscillations in piriform cortex (Wilson & Bower 1992) [Model]

Woolf TB, Shepherd GM, Greer CA (1991) Local information processing in dendritic trees: subsets of spines in granule cells of the mammalian olfactory bulb. J Neurosci 11(6):1837-54 [Journal] [PubMed]

   Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014) [Model]

Woolf TB, Shepherd GM, Greer CA (1991) Serial reconstructions of granule cell spines in the mammalian olfactory bulb. Synapse 7:181-92 [PubMed]

Yuen GL, Durand D (1991) Reconstruction of hippocampal granule cell electrophysiology by computer simulation. Neuroscience 41:411-23 [PubMed]

Alturki A, Feng F, Nair A, Guntu V, Nair SS (2016) Distinct current modules shape cellular dynamics in model neurons. Neuroscience 334:309-331 [Journal] [PubMed]

   Distinct current modules shape cellular dynamics in model neurons (Alturki et al 2016) [Model]

Anderson WD, Makadia HK, Vadigepalli R (2015) Molecular variability elicits a tunable switch with discrete neuromodulatory response phenotypes. J Comput Neurosci [Journal] [PubMed]

   Cell signaling/ion channel variability effects on neuronal response (Anderson, Makadia, et al. 2015) [Model]

Aradi I, Erdi P (1996) MULTICOMPARTMENTAL MODELING OF THE OLFACTORY BULB Cybernetics and Systems 27:605-615

Aradi I, Erdi P (1996) Signal generation and propagation in the olfactory bulb: multicompartmental modeling Computers And Mathematics With Applications 32:1-27

Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [Journal] [PubMed]

   Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007) [Model]

Bush K, Knight J, Anderson C (2005) Optimizing conductance parameters of cortical neural models via electrotonic partitions. Neural Netw 18:488-96 [PubMed]

Cataldo E, Byrne JH, Baxter DA (2006) Computational Model of a Central Pattern Generator CMSB 2006, Lecture Notes in Bioinformatics LNBI 4210, Priami C, ed. pp.242 [Journal]

   Computational Model of a Central Pattern Generator (Cataldo et al 2006) [Model]

Christensen TA, D`Alessandro G, Lega J, Hildebrand JG (2001) Morphometric modeling of olfactory circuits in the insect antennal lobe: I. Simulations of spiking local interneurons. Biosystems 61:143-53 [Journal] [PubMed]

David F, Courtiol E, Buonviso N, Fourcaud-Trocmé N (2015) Competing Mechanisms of Gamma and Beta Oscillations in the Olfactory Bulb Based on Multimodal Inhibition of Mitral Cells Over a Respiratory Cycle. eNeuro [Journal] [PubMed]

   Gamma-beta alternation in the olfactory bulb (David, Fourcaud-Trocmé et al., 2015) [Model]

David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25-38 [Journal] [PubMed]

   Lateral dendrodenditic inhibition in the Olfactory Bulb (David et al. 2008) [Model]

Davison A (2004) Biologically-detailed network modelling (Chapter 10) Computation Neuroscience: A Comprehensive Approach, Feng J, ed. pp.287

Davison AP, Feng J, Brown D (2000) A reduced compartmental model of the mitral cell for use in network models of the olfactory bulb. Brain Res Bull 51:393-9 [Journal] [PubMed]

   Olfactory Mitral Cell (Davison et al 2000) [Model]

Davison AP, Feng J, Brown D (2003) Dendrodendritic inhibition and simulated odor responses in a detailed olfactory bulb network model. J Neurophysiol 90:1921-1935 [Journal] [PubMed]

   Olfactory Bulb Network (Davison et al 2003) [Model]

De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [Journal] [PubMed]

   Cerebellar purkinje cell (De Schutter and Bower 1994) [Model]

Erdi P, Aradi I, Grobler T (1997) Rhythmogenesis in single cells and population models: olfactory bulb and hippocampus. Biosystems 40:45-53 [PubMed]

Fransen E (2007) Neural response profile design: Reducing epileptogenic activity by modifying neuron responses to synchronized input using novel potassium channels obtained by parameter search optimization Neurocomputing 70(10-12):1630-1634 [Journal]

Gilra A, Bhalla US (2015) Bulbar microcircuit model predicts connectivity and roles of interneurons in odor coding. PLoS One 10:e0098045 [Journal] [PubMed]

   Olfactory bulb microcircuits model with dual-layer inhibition (Gilra & Bhalla 2015) [Model]

Gunay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28:7476-91 [Journal] [PubMed]

   [7 reconstructed morphologies on NeuroMorpho.Org]
   Globus pallidus multi-compartmental model neuron with realistic morphology (Gunay et al. 2008) [Model]

Haag J, Vermeulen A, Borst A (1999) The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: III. Visual response properties. J Comput Neurosci 7:213-34 [Journal] [PubMed]

   Fly lobular plate VS cell (Borst and Haag 1996, et al. 1997, et al. 1999) [Model]

Huys QJ, Ahrens MB, Paninski L (2006) Efficient estimation of detailed single-neuron models. J Neurophysiol 96:872-90 [Journal] [PubMed]

   Efficient estimation of detailed single-neuron models (Huys et al. 2006) [Model]

Jackson ME, Cauller LJ (1997) Evaluation of simplified compartmental models of reconstructed neocortical neurons for use in large-scale simulations of biological neural networks. Brain Res Bull 44:7-17 [PubMed]

Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730-42 [Journal] [PubMed]

Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037-58 [Journal] [PubMed]

   A two-layer biophysical olfactory bulb model of cholinergic neuromodulation (Li and Cleland 2013) [Model]

Lowe G (2002) Inhibition of Backpropagating Action Potentials in Mitral Cell Secondary Dendrites. J Neurophysiol 88:64-85 [Journal] [PubMed]

Marasco A, Limongiello A, Migliore M (2012) Fast and accurate low-dimensional reduction of biophysically detailed neuron models Scientific Reports 2:928:1-7 [Journal] [PubMed]

   Ca1 pyramidal neuron: reduction model (Marasco et al. 2012) [Model]

Masurkar AV, Chen WR (2011) Potassium currents of olfactory bulb juxtaglomerular cells: characterization, simulation, and implications for plateau potential firing. Neuroscience 192:247-262 [Journal] [PubMed]

   Calcium and potassium currents of olfactory bulb juxtaglomerular cells (Masurkar and Chen 2011) [Model]

McIntyre AB, Cleland TA (2016) Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol :jn.00671.2015 [Journal] [PubMed]

Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [Journal] [PubMed]

   CA3 Pyramidal Neuron (Migliore et al 1995) [Model]

O`Connor S, Angelo K, Jacob TJC (2012) Burst firing versus synchrony in a gap junction connected olfactory bulb mitral cell network model. 6:75. Frontiers in Computational Neuroscience 6:75:1-18 [Journal]

   Olfactory bulb mitral cell gap junction NN model: burst firing and synchrony (O`Connor et al. 2012) [Model]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Popovic M, Djurisic M, Zecevic D (2005) Determinants of low EPSP attenuation in primary dendrites of mitral cells: modeling study. Ann N Y Acad Sci 1048:344-8 [PubMed]

   Compartmental model of a mitral cell (Popovic et al. 2005) [Model]

Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Fregnac Y, Markram, Destexhe (2008) Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons. Biol Cybern 99:427-41 [Journal] [PubMed]

   Hodgkin-Huxley models of different classes of cortical neurons (Pospischil et al. 2008) [Model]

Rubin DB, Cleland TA (2006) Dynamical mechanisms of odor processing in olfactory bulb mitral cells. J Neurophysiol 96(2):555-568 [Journal] [PubMed]

   Dynamical model of olfactory bulb mitral cell (Rubin, Cleland 2006) [Model]

Shapiro NP, Lee R (2007) Synaptic Amplification versus Bistablility in Motoneuron Dendritic Processing: A Top-down Modeling Approach. J Neurophysiol 97:3948-3960 [PubMed]

Shen GY, Chen WR, Midtgaard J, Shepherd GM, Hines ML (1999) Computational analysis of action potential initiation in mitral cell soma and dendrites based on dual patch recordings. J Neurophysiol 82:3006-20 [Journal] [PubMed]

   Action potential initiation in the olfactory mitral cell (Shen et al 1999) [Model]

Simoes_De_Souza FM, Antunes G, Roque AC (2014) Electrical responses of three classes of Granule Neurons of the Olfactory Bulb to synaptic Inputs in Different Dendritic Locations Front. Comput. Neurosci. 8:128 [Journal]

   Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014) [Model]

Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of Computational Modelling in Neuroscience, Cambridge University Press :1-401 [Journal]

   Principles of Computational Modelling in Neuroscience (Book) (Sterratt et al. 2011) [Model]

Tabak J, Murphey CR, Moore LE (2001) Parameter estimation methods for single neuron models. J Comput Neurosci 9:215-36 [Journal] [PubMed]

Wang XY, McKenzie JS, Kemm RE (1996) Whole-cell K+ currents in identified olfactory bulb output neurones of rats. J Physiol 490 ( Pt 1):63-77 [Journal] [PubMed]

   Olfactory Mitral Cell: I-A and I-K currents (Wang et al 1996) [Model]

(87 refs)