Signal integration in LGN cells (Briska et al 2003)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:29942
Computer models were used to investigate passive properties of lateral geniculate nucleus thalamocortical cells and thalamic interneurons based on in vitro whole-cell study. Two neurons of each type were characterized physiologically and morphologically. Differences in the attenuation of propagated signals depend on both cell morphology and signal frequency. See the paper for details.
Reference:
1 . Briska AM, Uhlrich DJ, Lytton WW (2003) Computer model of passive signal integration based on whole-cell in vitro studies of rat lateral geniculate nucleus. Eur J Neurosci 17:1531-41 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Influence of Dendritic Geometry;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron;
 
/
lgnsigint
                            
File not selected

<- Select file from this column.

Briska AM, Uhlrich DJ, Lytton WW (2003) Computer model of passive signal integration based on whole-cell in vitro studies of rat lateral geniculate nucleus. Eur J Neurosci 17:1531-41[PubMed]

References and models cited by this paper

References and models that cite this paper

Bal T, von Krosigk M, McCormick DA (1995) Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J Physiol 483 ( Pt 3):665-85 [PubMed]

Bernander O, Douglas RJ, Martin KA, Koch C (1991) Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proc Natl Acad Sci U S A 88:11569-73 [PubMed]

Bloomfield SA, Sherman SM (1989) Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proc Natl Acad Sci U S A 86:3911-4 [PubMed]

Briska A, Uhlrich DJ, Lytton WW (1999) Passive properties and signal synergy in thalamic cells. Soc Neurosci Abstr 25:8483

Budde T, Munsch T, Pape HC (1998) Distribution of L-type calcium channels in rat thalamic neurones. Eur J Neurosci 10:586-97 [PubMed]

Chitwood RA, Hubbard A, Jaffe DB (1999) Passive electrotonic properties of rat hippocampal CA3 interneurones. J Physiol 515 ( Pt 3):743-56 [PubMed]

   [66 reconstructed morphologies on NeuroMorpho.Org]

Cox CL, Sherman SM (2000) Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27:597-610 [PubMed]

Cox CL, Zhou Q, Sherman SM (1998) Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394:478-82 [PubMed]

Hamos JE, Van Horn SC, Raczkowski D, Uhlrich DJ, Sherman SM (2000) Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317:618-21 [PubMed]

Hines M (1993) NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling, Eeckman F, ed. pp.127

Hines M (1993) The NEURON simulation program. Neural Network Simulation Environments, Skrzypek J, ed.

Jaffe DB, Carnevale NT (1999) Passive normalization of synaptic integration influenced by dendritic architecture. J Neurophysiol 82:3268-85 [Journal] [PubMed]

   [66 reconstructed morphologies on NeuroMorpho.Org]

Jones EG (1985) The Thalamus

Kapur A, Lytton WW, Ketchum KL, Haberly LB (1997) Regulation of the NMDA component of EPSPs by different components of postsynaptic GABAergic inhibition: computer simulation analysis in piriform cortex. J Neurophysiol 78:2546-59 [Journal] [PubMed]

Kapur A, Pearce RA, Lytton WW, Haberly LB (1997) GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells. J Neurophysiol 78:2531-45 [Journal] [PubMed]

Major G, Evans JD, Jack JJ (1993) Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys J 65:423-49 [PubMed]

Major G, Evans JD, Jack JJ (1993) Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. Biophys J 65:450-68 [PubMed]

Mastronarde DN (1987) Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J Neurophysiol 57:357-80 [Journal] [PubMed]

Neubig M (1999) Variation in GABA mini amplitude in thalamocortical neurons: contrasting experimental data and computational analyses Faculté De Medecine

Neubig M, Destexhe A (2001) Dendritic organization in thalamocortical neurons and state-dependent functions of inhibitory synaptic inputs. Thalamus And Related Systems 1:39-52

Pasik P, Pasik T, Hamori J (1976) Synapses between interneurons in the lateral geniculate nucleus of monkeys. Exp Brain Res 25:1-13 [PubMed]

Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76:1367-95 [Journal] [PubMed]

Staley KJ, Otis TS, Mody I (1992) Membrane properties of dentate gyrus granule cells: comparison of sharp microelectrode and whole-cell recordings. J Neurophysiol 67:1346-58 [Journal] [PubMed]

Steriade M, Deschaenes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473-97 [Journal] [PubMed]

Steriade M, Jones EG, Llinas RR (1990) Thalamic Oscillations And Signalling

Storm JF (1990) Why is the input conductance of hippocampal neurones impaled with microelectrodes so much higher than when giga-seal patch pipettes are used? Soc Neurosci Abstr 16:506

Stuart G, Spruston N (1998) Determinants of voltage attenuation in neocortical pyramidal neuron dendrites. J Neurosci 18:3501-10 [PubMed]

   [13 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep: attenuation in dendrites (Stuart, Spruston 1998) [Model]

Usrey WM, Reppas JB, Reid RC (1998) Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384-7 [PubMed]

von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361-4 [PubMed]

Wathey JC, Lytton WW, Jester JM, Sejnowski TJ (1992) Computer simulations of EPSP-spike (E-S) potentiation in hippocampal CA1 pyramidal cells. J Neurosci 12:607-18 [PubMed]

Wilson JR, Friedlander MJ, Sherman SM (1984) Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus. Proc R Soc Lond B Biol Sci 221:411-36 [PubMed]

Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ (1999) An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. J Neurophysiol 81:702-11 [Journal] [PubMed]

   Thalamic interneuron multicompartment model (Zhu et al. 1999) [Model]

Zhu JJ, Uhlrich DJ, Lytton WW (1999) Properties of a hyperpolarization-activated cation current in interneurons in the rat lateral geniculate nucleus. Neuroscience 92:445-57 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445-60 [Journal] [PubMed]

   Thalamic interneuron multicompartment model (Zhu et al. 1999) [Model]

Allken V, Chepkoech J-L, Einevoll GT, Halnes G (2014) The subcellular distribution of T-type Ca++ channels in interneurons of the lateral geniculate nucleus PLoS ONE 9(9):e107780 [Journal] [PubMed]

   The subcellular distribution of T-type Ca2+ channels in LGN interneurons (Allken et al. 2014) [Model]

Carnevale NT, Morse TM (1996-2009) Research reports that have used NEURON Web published citations at the NEURON website [Journal]

Casale AE, McCormick DA (2011) Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 31:18289-302 [Journal] [PubMed]

   Active dendritic action potential propagation (Casale & McCormick 2011) [Model]

Connelly WM, Crunelli V, Errington AC (2015) The Global Spike: Conserved Dendritic Properties Enable Unique Ca2+ Spike Generation in Low-Threshold Spiking Neurons. J Neurosci 35:15505-22 [Journal] [PubMed]

   Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016) [Model]

Connelly WM, Crunelli V, Errington AC (2016) Passive Synaptic Normalization and Input Synchrony-Dependent Amplification of Cortical Feedback in Thalamocortical Neuron Dendrites. J Neurosci 36:3735-54 [Journal] [PubMed]

   Rat LGN Thalamocortical Neuron (Connelly et al 2015, 2016) [Model]

Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M (2011) A Multi-Compartment Model for Interneurons in the Dorsal Lateral Geniculate Nucleus PLoS Comp. Biol. 7(9):e1002160 [Journal] [PubMed]

   [3 reconstructed morphologies on NeuroMorpho.Org]
   A multi-compartment model for interneurons in the dLGN (Halnes et al. 2011) [Model]

Perreault MC, Raastad M (2006) Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. J Physiol 577:205-220 [PubMed]

(41 refs)