CA3 Pyramidal Neuron (Migliore et al 1995)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3263
Model files from the paper: M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3 hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). Demonstrates how the same cell could be bursting or non bursting according to the Ca-independent conductance densities. Includes calculation of intracellular Calcium. Instructions are provided in the below README file. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
Reference:
1 . Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
/
ca3_db
README.txt
borgka.mod
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
kahp.mod *
kdr.mod *
nahh.mod *
ca3a.geo
mosinit.hoc
test_a.hoc
                            
Hippocampal CA3 pyramidal neuron model from the paper 
M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer
simulations of morphologically reconstructed CA3 hippocampal neurons, J.
Neurophysiol. 73, 1157-1168 (1995). 

The paper shows how bursting and non bursting firing modes of CA3 
neurons can depend on the densities of the Ca-independent conductances,
that prevent the build-up of the Ca-dependent depolarizing envelope
(compare bursting and short non bursting simulations).
Calcium accumulation during long current injections results in
spike adaptation modulated by Ca-dependent conductances and KM.

Under unix systems:
to compile the mod files use the command 
nrnivmodl 
and run the simulation hoc file with the command 
nrngui test_a.hoc

This will open a window from which three simulations using the A neuron
could be run to show bursting and non bursting firing of the same cell.


Under Windows:
to compile the mod files use the "mknrndll DOS box" and 
follow on-screen instructions.
A double click on the simulation file
test_a.hoc 
will open the simulation window.

Questions on how to use this model should be directed to
michele.migliore@pa.ibf.cnr.it

July 5th 2007 Model updated to run with Model View (1e-6 replaced 0's
in ca3a.geo) TMM
August 24th 2007 Updated to allow shape plots to be updated via
inclusion of flushPlot() in test_a.hoc TMM

Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68[PubMed]

References and models cited by this paper

References and models that cite this paper

Adams PR, Brown DA, Constanti A (1982) M-currents and other potassium currents in bullfrog sympathetic neurones. J Physiol 330:537-72 [PubMed]

Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948-65 [Journal] [PubMed]

   Granule Cells of the Olfactory Bulb (Simoes_De_Souza et al. 2014) [Model]
   Olfactory Mitral Cell (Bhalla, Bower 1993) [Model]

Blaxter TJ, Carlen PL, Niesen C (1989) Pharmacological and anatomical separation of calcium currents in rat dentate granule neurones in vitro. J Physiol 412:93-112 [PubMed]

Borg-graham L (1991) Modelling the non-linear conductances of excitable membranes Cellular Neurobiology: A Practical Approach, Wheal CHADJ&HV, ed. pp.247

Buzsaki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398:242-52 [PubMed]

Buzsaki G, Haas HL, Anderson EG (1987) Long-term potentiation induced by physiologically relevant stimulus patterns. Brain Res 435:331-3 [PubMed]

Clairborne BJ, Zador AM, Mainen ZF, Brown TH (1992) Computational models of hippocampal neurons Single Neuron Computation, Mckenna T:Davis J:Zornetrer SF, ed. pp.61

Eliot LS, Johnston D (1994) Multiple components of calcium current in acutely dissociated dentate gyrus granule neurons. J Neurophysiol 72:762-77 [Journal] [PubMed]

Ficker E, Heinemann U (1992) Slow and fast transient potassium currents in cultured rat hippocampal cells. J Physiol 445:431-55 [PubMed]

Fisher RE, Gray R, Johnston D (1990) Properties and distribution of single voltage-gated calcium channels in adult hippocampal neurons. J Neurophysiol 64:91-104 [Journal] [PubMed]

Foster WR, Paton JFR, Hopfield JJ, Ungar LH, Schwaber JS (1993) Matching neural models to experiment Computation And Neural Systems, Eeckman FH:Bower JM, ed. pp.21

Fox AP, Nowycky MC, Tsien RW (1987) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 394:149-72 [PubMed]

Hablitz JJ, Johnston D (1981) Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons. Cell Mol Neurobiol 1:325-34 [PubMed]

Hines M (1993) NEURON--a program for simulation of nerve equations. Neural Systems: Analysis And Modeling, Eeckman F, ed. pp.127

Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244-6 [PubMed]

Jaffe DB, Ross WN, Lisman JE, Lasser-Ross N, Miyakawa H, Johnston D (1994) A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. J Neurophysiol 71:1065-77 [Journal] [PubMed]

Jensen MS, Azouz R, Yaari Y (1994) Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. J Neurophysiol 71:831-9 [Journal] [PubMed]

Johnston D, Brown TH (1984) Mechanisms of neuronal burst generation Electrophysiology Of Epil, Schwartzkroin PA:Wheal HV, ed. pp.277

Kim HG, Connors BW (1993) Apical dendrites of the neocortex: correlation between sodium- and calcium-dependent spiking and pyramidal cell morphology. J Neurosci 13:5301-11 [PubMed]

Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319-31 [PubMed]

Major G, Larkman AU, Jonas P, Sakmann B, Jack JJ (1994) Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J Neurosci 14:4613-38 [PubMed]

Mintz IM, Adams ME, Bean BP (1992) P-type calcium channels in rat central and peripheral neurons. Neuron 9:85-95 [PubMed]

Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CA1 pyramidal cells are primarily due to voltage-gated Ca2+ channels. Neuron 9:1163-73 [PubMed]

Moczydlowski E, Latorre R (1983) Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J Gen Physiol 82:511-42 [Journal] [PubMed]

   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) NEURON [Model]
   Ca-dependent K Channel: kinetics from rat muscle (Moczydlowski, Latorre 1983) XPP [Model]

Mogul DJ, Fox AP (1991) Evidence for multiple types of Ca2+ channels in acutely isolated hippocampal CA3 neurones of the guinea-pig. J Physiol 433:259-81 [PubMed]

Numann RE, Wadman WJ, Wong RK (1987) Outward currents of single hippocampal cells obtained from the adult guinea-pig. J Physiol 393:331-53 [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Rall W, Burke RE, Holmes WR, Jack JJ, Redman SJ, Segev I (1992) Matching dendritic neuron models to experimental data. Physiol Rev 72:S159-86 [PubMed]

Regehr WG, Tank DW (1992) Calcium concentration dynamics produced by synaptic activation of CA1 hippocampal pyramidal cells. J Neurosci 12:4202-23 [PubMed]

Sah P, Gibb AJ, Gage PW (1988) The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons. J Gen Physiol 91:373-98 [PubMed]

Scharfman HE (1993) Spiny neurons of area CA3c in rat hippocampal slices have similar electrophysiological characteristics and synaptic responses despite morphological variation. Hippocampus 3:9-28 [PubMed]

Schwartzkroin PA, Prince DA (1980) Effects of TEA on hippocampal neurons. Brain Res 185:169-81 [PubMed]

Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161-87 [PubMed]

Traub RD, Wong RK, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635-50 [Journal] [PubMed]

Tsai KY, Carnevale NT, Claiborne BJ, Brown TH (1994) Efficient mapping from neuroanatomical to electronic space Network 5:21-46

Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 347:281-4 [PubMed]

Westenbroek RE, Hell JW, Warner C, Dubel SJ, Snutch TP, Catterall WA (1992) Biochemical properties and subcellular distribution of an N-type calcium channel alpha 1 subunit. Neuron 9:1099-115 [PubMed]

Williams S, Johnston D (1990) Muscarinic depression of synaptic transmission at the hippocampal mossy fiber synapse. J Neurophysiol 64:1089-97 [Journal] [PubMed]

Aguiar P, Willshaw D (2004) Hippocampal mossy fibre boutons as dynamical synapses Neurocomputing 58:699-703

Anwar H, Roome CJ, Nedelescu H, Chen W, Kuhn B, De Schutter E (2014) Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models Frontiers in Cellular Neuroscience 8(168):1-14 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Calcium dynamics depend on dendritic diameters (Anwar et al. 2014) [Model]

Aradi I, Holmes WR (1999) Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability. J Comput Neurosci 6:215-35 [Journal] [PubMed]

   Dentate gyrus granule cell: calcium and calcium-dependent conductances (Aradi and Holmes 1999) [Model]

Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. Elife [Journal] [PubMed]

   Hippocampal CA1 NN with spontaneous theta, gamma: full scale & network clamp (Bezaire et al 2016) [Model]

Briant LJ, Stalbovskiy AO, Nolan MF, Champneys AR, Pickering AE (2014) Increased intrinsic excitability of muscle vasoconstrictor preganglionic neurons may contribute to the elevated sympathetic activity in hypertensive rats. J Neurophysiol 112:2756-2778 [Journal] [PubMed]

   Sympathetic Preganglionic Neurone (Briant et al. 2014) [Model]

Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA (2014) A detailed, conductance based computer model of intrinsic sensory neurons of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 307:G517-G532 [Journal] [PubMed]

   Intrinsic sensory neurons of the gut (Chambers et al. 2014) [Model]

Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature 447:1081-6 [Journal] [PubMed]

   Rejuvenation model of dopamine neuron (Chan et al. 2007) [Model]

Clancy CE, Kass RS (2004) Theoretical investigation of the neuronal Na+ channel SCN1A: abnormal gating and epilepsy. Biophys J 86:2606-14 [PubMed]

   Markov models of SCN1A (NaV1.1) applied to abnormal gating and epilepsy (Clancy and Kass 2004) [Model]

Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7 [PubMed]

Cook EP, Johnston D (1997) Active dendrites reduce location-dependent variability of synaptic input trains. J Neurophysiol 78:2116-28 [Journal] [PubMed]

Coop AD, Reeke GN (2001) The composite neuron: a realistic one-compartment Purkinje cell model suitable for large-scale neuronal network simulations. J Comput Neurosci 10:173-86 [Journal] [PubMed]

Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [Journal] [PubMed]

   Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015) [Model]

Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28:10814-24 [Journal] [PubMed]

Gleeson P, Steuber V, Silver RA (2007) neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron 54:219-35 [Journal] [PubMed]

Good TA, Murphy RM (1996) Effect of beta-amyloid block of the fast-inactivating K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl Acad Sci U S A 93:15130-5 [PubMed]

Gottschalk A, Haney P (2003) Computational aspects of anesthetic action in simple neural models. Anesthesiology 98:548-64 [PubMed]

Guet-McCreight A, Camire O, Topolnik L, Skinner FK (2016) Using a Semi-Automated Strategy to Develop Multi-Compartment Models That Predict Biophysical Properties of Interneuron-Specific 3 (IS3) Cells in Hippocampus. eNeuro [Journal] [PubMed]

   Interneuron Specific 3 Interneuron Model (Guet-McCreight et al, 2016) [Model]

Hay E, Schurmann F, Markram H, Segev I (2013) Preserving Axo-somatic Spiking Features Despite Diverse Dendritic Morphology. J Neurophysiol 109(12):2972-81 [Journal] [PubMed]

   [4 reconstructed morphologies on NeuroMorpho.Org]
   Preserving axosomatic spiking features despite diverse dendritic morphology (Hay et al., 2013) [Model]

Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB (2008) Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b Hippocampus 18(4):411-24 [Journal] [PubMed]

   CA3 pyramidal neuron: firing properties (Hemond et al. 2008) [Model]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

Jackson ME, Cauller LJ (1997) Evaluation of simplified compartmental models of reconstructed neocortical neurons for use in large-scale simulations of biological neural networks. Brain Res Bull 44:7-17 [PubMed]

Kager H, Wadman WJ, Somjen GG (2007) Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22:105-128 [Journal] [PubMed]

Krichmar JL, Nasuto SJ, Scorcioni R, Washington SD, Ascoli GA (2002) Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study. Brain Res 941:11-28 [PubMed]

Krichmar JL, Velasquez D, Ascoli GA (2006) Effects of {beta--Catenin on Dendritic Morphology and Simulated Firing Patterns in Cultured Hippocampal Neurons. Biol Bull 211:31-43 [PubMed]

   [29 reconstructed morphologies on NeuroMorpho.Org]

Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7-KCNQ-M channels control interspike interval in hippocampal interneurons. J Neurosci 26:12325-38 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   O-LM interneuron model (Lawrence et al. 2006) [Model]

Lazarewicz MT, Migliore M, Ascoli GA (2002) A new bursting model of CA3 pyramidal cell physiology suggests multiple locations for spike initiation. Biosystems 67:129-37 [Journal] [PubMed]

   CA3 pyramidal neuron (Lazarewicz et al 2002) [Model]

Menschik ED, Finkel LH (2000) Cholinergic neuromodulation of an anatomically reconstructed hippocampal CA3 pyramidal cell Neurocomputing

Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [Journal] [PubMed]

   Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007) [Model]

Migliore M (1996) Modeling the attenuation and failure of action potentials in the dendrites of hippocampal neurons. Biophys J 71:2394-403 [Journal] [PubMed]

   CA1 Pyramidal Neuron: slow Na+ inactivation (Migliore 1996) [Model]

Migliore M, Shepherd GM (2002) Emerging rules for the distributions of active dendritic conductances. Nature Review Neuroscience 3:362-70 [Journal] [PubMed]

   Modulation of temporal integration window (Migliore, Shepherd 2002) [Model]

Morse TM (2008) ModelDB in Computational Neuroscience Education - a research tool as interactive educational media. Interactive Educational Media for the Neural and Cognitive Sciences. Brains, Minds & Media, Lorenz S, Egelhaaf M, ed. pp.bmm1409 [Journal]

Narayanan R, Chattarji S (2010) Computational analysis of the impact of chronic stress on intrinsic and synaptic excitability in the hippocampus. J Neurophysiol 103:3070-83 [PubMed]

   Impact of dendritic atrophy on intrinsic and synaptic excitability (Narayanan & Chattarji, 2010) [Model]

Padmashri R, Ganguly A, Mondal PP, Rajan K, Sikdar SK (2006) Kynurenate treatment of autaptic hippocampal microcultures affect localized voltage-dependent calcium diffusion in the dendrites. Cell Calcium 39:247-58 [Journal] [PubMed]

Ray S, Bhalla US (2008) PyMOOSE: Interoperable Scripting in Python for MOOSE. Front Neuroinformatics 2(6):1-16 [Journal] [PubMed]

   Moose/PyMOOSE: interoperable scripting in Python for MOOSE (Ray and Bhalla 2008) [Model]

Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [Journal] [PubMed]

   Dentate gyrus network model (Santhakumar et al 2005) [Model]
   Dentate gyrus (Morgan et al. 2007, 2008, Santhakumar et al. 2005, Dyhrfjeld-Johnsen et al. 2007) [Model]

Saraga F, Wu CP, Zhang L, Skinner FK (2003) Active Dendrites and Spike Propagation in Multi-compartment Models of Oriens-Lacunosum/Moleculare Hippocampal Interneurons. J Physiol 552(3):673-689 [Journal] [PubMed]

   Active dendrites and spike propagation in a hippocampal interneuron (Saraga et al 2003) [Model]

Scorcioni R, Lazarewicz MT, Ascoli GA (2004) Quantitative morphometry of hippocampal pyramidal cells: differences between anatomical classes and reconstructing laboratories. J Comp Neurol 473:177-93 [PubMed]

Song D, Wang Z, Berger TW (2002) Contribution of T-type VDCC to TEA-induced long-term synaptic modification in hippocampal CA1 and dentate gyrus. Hippocampus 12:689-97 [Journal] [PubMed]

Stanley DA, Bardakjian BL, Spano ML, Ditto WL (2011) Stochastic amplification of calcium-activated potassium currents in Ca(2+) microdomains. J Comput Neurosci [Journal] [PubMed]

   CA1 pyramidal: Stochastic amplification of KCa in Ca2+ microdomains (Stanley et al. 2011) [Model]

Sundt D, Gamper N, Jaffe DB (2015) Spike propagation through the dorsal root ganglia in an unmyelinated sensory neuron: a modeling study. J Neurophysiol 114:3140-53 [Journal] [PubMed]

   A model of the T-junction of a C-fiber sensory neuron (Sundt et al. 2015) [Model]

Tsutsui H, Oka Y (2002) Slow removal of Na(+) channel inactivation underlies the temporal filtering property in the teleost thalamic neurons. J Physiol 539:743-53 [PubMed]

   Novel Na current with slow de-inactivation (Tsutsui, Oka 2002) [Model]

van Ooyen A, Duijnhouwer J, Remme MW, van Pelt J (2002) The effect of dendritic topology on firing patterns in model neurons. Network 13:311-25 [PubMed]

Washington SD, Ascoli GA, Krichmar JL (2000) Statistical Analysis of Dendritic Morphology's Effect on CA3 Pyramidal Cell Electrophysiology Neurocomputing 32:261-269

Xu J, Clancy CE (2008) Ionic mechanisms of endogenous bursting in CA3 hippocampal pyramidal neurons: a model study. PLoS ONE 3:e2056 [Journal] [PubMed]

   Ionic mechanisms of bursting in CA3 pyramidal neurons (Xu and Clancy 2008) [Model]

Zaika O, Lara L, Gamper N, Hilgemann DW, Jaffe DB, Shapiro MS (2006) Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels. J. Physiol. 575:49-67 [Journal] [PubMed]

(83 refs)