Local variable time step method (Lytton, Hines 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:33975
The local variable time-step method utilizes separate variable step integrators for individual neurons in the network. It is most suitable for medium size networks in which average synaptic input intervals to a single cell are much greater than a fixed step dt.
Reference:
1 . Lytton WW, Hines ML (2005) Independent variable time-step integration of individual neurons for network simulations. Neural Comput 17:903-21 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
RegionFitness xdat ydat boundary weight (lines=1552) 1
|INT[0].vp.object(13).s|
772
0
0.0178333
0.0356666
0.0869106
0.138155
0.189399
0.240643
0.31961
0.398578
0.477546
0.556513
0.635481
0.714448
0.793416
0.872384
0.951351
1.03032
1.10929
1.18825
1.26722
1.34619
1.42516
1.50412
1.58309
1.66206
1.74103
1.81999
1.86192
1.90385
1.94577
1.9877
2.02962
2.07155
2.11347
2.1554
2.19733
2.23925
2.28118
2.3231
2.36503
2.40696
2.42694
2.44692
2.46691
2.49802
2.52913
2.56024
2.59135
2.62246
2.65357
2.68468
2.71579
2.7334
2.75101
2.76862
2.78623
2.80384
2.8145
2.82515
2.83581
2.8519
2.86214
2.87239
2.88264
2.89288
2.90313
2.91338
2.92362
2.92968
2.93573
2.94178
2.94784
2.95389
2.95995
2.966
2.97205
2.97811
2.98416
2.98829
2.99241
2.99653
2.99931
3.00208
3.00485
3.00762
3.01039
3.01316
3.01593
3.0187
3.02148
3.0257
3.02993
3.03415
3.03838
3.04549
3.0526
3.05971
3.06682
3.07393
3.08104
3.08815
3.09893
3.10972
3.11744
3.12517
3.13289
3.14062
3.14834
3.15607
3.16379
3.17152
3.17682
3.18212
3.18574
3.18935
3.19297
3.19658
3.2002
3.20381
3.20743
3.21104
3.21466
3.21827
3.22189
3.2282
3.23452
3.24083
3.24715
3.25346
3.25978
3.26609
3.27241
3.27872
3.28504
3.29135
3.29767
3.30398
3.3103
3.31661
3.32293
3.32733
3.33174
3.33615
3.34055
3.34496
3.34937
3.35215
3.35493
3.35771
3.36049
3.36327
3.36605
3.36883
3.37161
3.37439
3.37717
3.37995
3.38274
3.38552
3.3883
3.39108
3.39386
3.39664
3.39942
3.4022
3.407
3.4118
3.4166
3.4214
3.4262
3.42923
3.43227
3.4353
3.43834
3.44137
3.44441
3.44744
3.45048
3.45351
3.45655
3.45958
3.46261
3.46565
3.47076
3.47587
3.48098
3.48609
3.4912
3.49631
3.50142
3.50653
3.51164
3.51675
3.52186
3.52697
3.53208
3.53524
3.53841
3.54157
3.54474
3.5479
3.55106
3.55423
3.55739
3.56056
3.56372
3.56688
3.57005
3.57321
3.57638
3.57954
3.5827
3.58587
3.58921
3.59256
3.5959
3.59924
3.60259
3.60593
3.60928
3.61262
3.61597
3.6215
3.62704
3.63258
3.63812
3.64366
3.65227
3.66088
3.66949
3.6781
3.6867
3.69531
3.70392
3.71253
3.72114
3.72975
3.73545
3.74115
3.74685
3.75255
3.75825
3.76395
3.76965
3.77535
3.78104
3.78674
3.79067
3.79461
3.79854
3.80123
3.80393
3.80662
3.80932
3.81201
3.81471
3.81741
3.8201
3.8228
3.82549
3.82819
3.83088
3.83358
3.83627
3.83897
3.84166
3.84436
3.84954
3.85472
3.85833
3.86194
3.86555
3.86916
3.87276
3.87839
3.88401
3.88963
3.89525
3.90087
3.90649
3.91212
3.91774
3.92336
3.92898
3.9346
3.94023
3.94585
3.95147
3.95709
3.96271
3.96833
3.97225
3.97616
3.98007
3.98274
3.98541
3.98807
3.99074
3.99341
3.99608
3.99875
4.00142
4.00408
4.00675
4.00942
4.01209
4.01476
4.01743
4.02009
4.02276
4.02543
4.0281
4.03077
4.03344
4.0361
4.03877
4.04144
4.04411
4.04678
4.04945
4.05375
4.05805
4.06235
4.06665
4.07095
4.07525
4.08195
4.08866
4.09536
4.10207
4.10877
4.11547
4.12218
4.12888
4.13558
4.14229
4.14899
4.1557
4.1624
4.1691
4.17581
4.18251
4.18921
4.19592
4.20262
4.20933
4.21603
4.22273
4.22944
4.23614
4.24284
4.24728
4.25172
4.25616
4.2606
4.26504
4.26947
4.27391
4.27665
4.27938
4.28211
4.28484
4.28758
4.29031
4.29304
4.29578
4.29851
4.30124
4.30397
4.30671
4.30944
4.31217
4.31491
4.31764
4.32037
4.3231
4.32584
4.32857
4.3313
4.33404
4.33677
4.3395
4.34223
4.34497
4.3477
4.35043
4.35317
4.3559
4.35863
4.36136
4.36558
4.36828
4.37098
4.37368
4.37638
4.37908
4.38178
4.38448
4.38719
4.38989
4.39259
4.39529
4.39799
4.40069
4.40482
4.40753
4.41024
4.41296
4.41567
4.41839
4.4211
4.42382
4.42653
4.42924
4.43196
4.43467
4.43739
4.4401
4.44446
4.44882
4.45319
4.45755
4.46191
4.46627
4.47063
4.47499
4.47936
4.48208
4.48481
4.48754
4.49026
4.49299
4.49572
4.49844
4.50117
4.5039
4.50662
4.50935
4.51208
4.5148
4.51753
4.52026
4.52298
4.52571
4.52994
4.53416
4.53839
4.54262
4.54685
4.55107
4.5553
4.55953
4.56375
4.56798
4.57221
4.57644
4.58066
4.58489
4.58912
4.59334
4.59757
4.6018
4.60603
4.60871
4.61139
4.61431
4.61723
4.62015
4.62306
4.62598
4.6289
4.63181
4.63473
4.63765
4.64057
4.64348
4.6464
4.64932
4.65224
4.65515
4.65807
4.66099
4.6639
4.66682
4.67052
4.67421
4.67791
4.68161
4.6853
4.689
4.6927
4.69639
4.70009
4.70378
4.70748
4.71118
4.71487
4.71857
4.72227
4.72596
4.72966
4.73335
4.73705
4.74075
4.74444
4.74814
4.75184
4.75553
4.75923
4.76292
4.76662
4.77032
4.77401
4.77771
4.78141
4.7851
4.7888
4.79249
4.79619
4.79989
4.80358
4.80728
4.81098
4.81467
4.82054
4.8264
4.83227
4.83813
4.844
4.85332
4.86263
4.87195
4.88127
4.89059
4.89991
4.90923
4.91855
4.92786
4.93718
4.9465
4.9522
4.95791
4.96361
4.96931
4.97501
4.98072
4.98642
4.99212
4.99783
5.00353
5.00743
5.01132
5.01522
5.01784
5.02047
5.02309
5.02571
5.02834
5.03096
5.03359
5.03621
5.03883
5.04146
5.04408
5.04671
5.04933
5.05379
5.05825
5.06271
5.06717
5.07164
5.0761
5.08056
5.08502
5.08948
5.09394
5.0984
5.10286
5.10733
5.11179
5.11625
5.12071
5.12368
5.12664
5.12961
5.13258
5.13554
5.13851
5.14148
5.14445
5.14741
5.15038
5.15335
5.15632
5.15928
5.16395
5.1667
5.16945
5.1722
5.17494
5.17769
5.18044
5.18319
5.18762
5.19205
5.19649
5.20092
5.20535
5.20978
5.21654
5.2233
5.23005
5.23681
5.24357
5.25032
5.25708
5.26383
5.27059
5.27735
5.2841
5.29086
5.29762
5.30437
5.30907
5.31377
5.31847
5.32317
5.32787
5.33257
5.33727
5.34197
5.34667
5.35136
5.35606
5.35897
5.36188
5.36479
5.36769
5.3706
5.37351
5.37641
5.37932
5.38223
5.38514
5.38804
5.39095
5.39386
5.39676
5.39967
5.40258
5.40549
5.40839
5.413
5.41761
5.42222
5.42683
5.43143
5.43953
5.44762
5.45291
5.4582
5.46349
5.46878
5.47407
5.47936
5.48465
5.48994
5.49523
5.50052
5.50581
5.5111
5.5141
5.51709
5.52008
5.52308
5.52607
5.52907
5.53206
5.537
5.54194
5.54688
5.55182
5.55676
5.5617
5.5693
5.57689
5.58449
5.59209
5.59968
5.60728
5.61488
5.62008
5.62528
5.63048
5.63568
5.64088
5.64608
5.65128
5.65648
5.66169
5.66689
5.67209
5.67729
5.68012
5.68294
5.68577
5.6886
5.69142
5.69425
5.69708
5.6999
5.70273
5.70556
5.70838
5.71121
5.71404
5.71871
5.72339
5.72806
5.73274
5.73741
5.74208
5.74676
5.75143
5.75611
5.76078
5.76546
5.77013
5.77481
5.77948
5.78239
5.78531
5.78822
5.79114
5.79405
5.79697
5.79988
5.8028
5.80571
5.80863
5.81154
5.81446
5.81737
5.82028
5.8232
5.82611
5.82903
5.83194
5.83679
5.84164
5.84649
5.85396
5.86143
5.86891
5.87638
5.88386
5.89133
5.8988
5.90628
5.91375
5.92123
5.9287
5.93617
5.94365
5.95112
5.9586
5.96607
5.97354
5.98102
5.98849
5.99597
6

1.34872e-10
1.34875e-10
1.3488e-10
1.34912e-10
1.34967e-10
1.35046e-10
1.35152e-10
1.35374e-10
1.35671e-10
1.36049e-10
1.36516e-10
1.37081e-10
1.37754e-10
1.38545e-10
1.3947e-10
1.40544e-10
1.41784e-10
1.43214e-10
1.44858e-10
1.46748e-10
1.4892e-10
1.51421e-10
1.54308e-10
1.5765e-10
1.61536e-10
1.66084e-10
1.71444e-10
1.74669e-10
1.78208e-10
1.82109e-10
1.86424e-10
1.91218e-10
1.96565e-10
2.02564e-10
2.09324e-10
2.16998e-10
2.25774e-10
2.35895e-10
2.47677e-10
2.6156e-10
2.78139e-10
2.87149e-10
2.9705e-10
3.07986e-10
3.2749e-10
3.50699e-10
3.78785e-10
4.13449e-10
4.57221e-10
5.14118e-10
5.90736e-10
6.98885e-10
7.81104e-10
8.86721e-10
1.02654e-09
1.21861e-09
1.49539e-09
1.72584e-09
2.03064e-09
2.44778e-09
3.45594e-09
4.51043e-09
6.19706e-09
9.13183e-09
1.47922e-08
2.72636e-08
5.99312e-08
1.66354e-07
3.32031e-07
7.43171e-07
1.87251e-06
5.25376e-06
1.61235e-05
5.28957e-05
0.000180447
0.000623789
0.00212144
0.00681685
0.0140707
0.027142
0.0478562
0.0663159
0.0877907
0.111401
0.136283
0.161747
0.187308
0.212644
0.237551
0.261903
0.297809
0.332132
0.364864
0.396036
0.445122
0.490254
0.531674
0.569625
0.604405
0.636319
0.665618
0.705558
0.74063
0.763047
0.783444
0.802025
0.818958
0.834382
0.848424
0.86121
0.872857
0.880243
0.887171
0.891646
0.89593
0.900031
0.903956
0.907713
0.911309
0.914752
0.918047
0.921201
0.92422
0.92711
0.931864
0.936268
0.940348
0.944128
0.94763
0.950875
0.95388
0.956665
0.959244
0.961634
0.963848
0.965899
0.967798
0.969557
0.971187
0.972695
0.97368
0.974613
0.975497
0.976332
0.977122
0.977867
0.978315
0.978746
0.97916
0.979557
0.979936
0.980299
0.980643
0.98097
0.981277
0.981564
0.981831
0.982075
0.982295
0.98249
0.982658
0.982797
0.982906
0.982985
0.983032
0.983038
0.982954
0.982786
0.982547
0.982249
0.982036
0.981808
0.981567
0.981315
0.981055
0.980787
0.980513
0.980235
0.979953
0.979669
0.979381
0.979092
0.978802
0.97831
0.977815
0.97732
0.976823
0.976326
0.975828
0.975331
0.974833
0.974335
0.973838
0.973341
0.972844
0.972347
0.972039
0.971732
0.971424
0.971117
0.97081
0.970503
0.970196
0.969889
0.969582
0.969275
0.968969
0.968662
0.968356
0.968049
0.967743
0.967437
0.967131
0.966808
0.966484
0.966161
0.965838
0.965515
0.965192
0.964869
0.964547
0.964224
0.96369
0.963157
0.962624
0.962091
0.961558
0.960731
0.959904
0.959078
0.958252
0.957428
0.956604
0.95578
0.954958
0.954136
0.953315
0.952772
0.952229
0.951686
0.951144
0.950602
0.950061
0.949519
0.948978
0.948438
0.947897
0.947525
0.947152
0.94678
0.946525
0.94627
0.946015
0.94576
0.945505
0.94525
0.944995
0.944741
0.944486
0.944232
0.943977
0.943723
0.943468
0.943214
0.94296
0.942706
0.942452
0.941963
0.941475
0.941136
0.940796
0.940457
0.940118
0.939779
0.93925
0.938722
0.938195
0.937668
0.937141
0.936614
0.936088
0.935561
0.935036
0.93451
0.933985
0.93346
0.932935
0.932411
0.931887
0.931363
0.93084
0.930476
0.930112
0.929748
0.9295
0.929252
0.929004
0.928756
0.928508
0.928261
0.928013
0.927765
0.927518
0.927271
0.927023
0.926776
0.926529
0.926281
0.926034
0.925787
0.92554
0.925293
0.925046
0.9248
0.924553
0.924306
0.92406
0.923813
0.923567
0.92332
0.922923
0.922526
0.92213
0.921733
0.921337
0.920941
0.920323
0.919707
0.91909
0.918474
0.917859
0.917244
0.916629
0.916015
0.915401
0.914788
0.914174
0.913562
0.91295
0.912338
0.911726
0.911115
0.910505
0.909895
0.909285
0.908676
0.908067
0.907458
0.90685
0.906242
0.905635
0.905233
0.904831
0.90443
0.904029
0.903627
0.903226
0.902826
0.902579
0.902332
0.902086
0.901839
0.901593
0.901346
0.9011
0.900854
0.900608
0.900362
0.900116
0.89987
0.899624
0.899378
0.899132
0.898887
0.898641
0.898395
0.89815
0.897904
0.897659
0.897414
0.897169
0.896923
0.896678
0.896433
0.896188
0.895944
0.895699
0.895454
0.895209
0.894965
0.894588
0.894346
0.894104
0.893863
0.893622
0.89338
0.893139
0.892898
0.892657
0.892416
0.892175
0.891934
0.891693
0.891452
0.891084
0.890842
0.890601
0.890359
0.890117
0.889876
0.889634
0.889393
0.889151
0.88891
0.888669
0.888428
0.888187
0.887946
0.887558
0.887171
0.886784
0.886398
0.886011
0.885625
0.885239
0.884853
0.884467
0.884226
0.883985
0.883744
0.883503
0.883262
0.883021
0.88278
0.88254
0.882299
0.882059
0.881818
0.881578
0.881337
0.881097
0.880857
0.880617
0.880377
0.880004
0.879633
0.879261
0.878889
0.878518
0.878146
0.877775
0.877404
0.877034
0.876663
0.876292
0.875922
0.875552
0.875182
0.874812
0.874442
0.874073
0.873703
0.873334
0.8731
0.872865
0.872611
0.872356
0.872102
0.871847
0.871593
0.871339
0.871085
0.870831
0.870577
0.870323
0.870069
0.869815
0.869561
0.869308
0.869054
0.868801
0.868547
0.868294
0.868041
0.86772
0.867399
0.867079
0.866758
0.866438
0.866118
0.865798
0.865478
0.865158
0.864838
0.864518
0.864199
0.86388
0.86356
0.863241
0.862922
0.862603
0.862284
0.861966
0.861647
0.861329
0.86101
0.860692
0.860374
0.860056
0.859738
0.859421
0.859103
0.858786
0.858468
0.858151
0.857834
0.857517
0.8572
0.856883
0.856566
0.85625
0.855933
0.855617
0.855301
0.8548
0.854298
0.853797
0.853297
0.852796
0.852002
0.851209
0.850416
0.849624
0.848832
0.848042
0.847252
0.846463
0.845674
0.844887
0.8441
0.843618
0.843137
0.842657
0.842176
0.841696
0.841216
0.840737
0.840257
0.839778
0.8393
0.838973
0.838646
0.838319
0.838099
0.837879
0.837659
0.83744
0.83722
0.837
0.836781
0.836561
0.836342
0.836122
0.835903
0.835684
0.835464
0.835092
0.834719
0.834347
0.833975
0.833603
0.833231
0.832859
0.832488
0.832117
0.831746
0.831375
0.831004
0.830633
0.830263
0.829892
0.829522
0.829276
0.82903
0.828784
0.828538
0.828292
0.828047
0.827801
0.827555
0.82731
0.827064
0.826819
0.826574
0.826329
0.825943
0.825716
0.825489
0.825262
0.825035
0.824809
0.824582
0.824355
0.82399
0.823625
0.82326
0.822895
0.82253
0.822166
0.821611
0.821056
0.820501
0.819947
0.819393
0.81884
0.818287
0.817734
0.817182
0.81663
0.816078
0.815527
0.814976
0.814426
0.814043
0.813661
0.813279
0.812896
0.812515
0.812133
0.811751
0.81137
0.810989
0.810608
0.810227
0.809991
0.809756
0.80952
0.809285
0.80905
0.808815
0.80858
0.808345
0.80811
0.807875
0.80764
0.807405
0.80717
0.806936
0.806701
0.806467
0.806232
0.805998
0.805627
0.805256
0.804885
0.804514
0.804143
0.803492
0.802842
0.802418
0.801993
0.801569
0.801145
0.800722
0.800298
0.799875
0.799452
0.799029
0.798607
0.798184
0.797762
0.797523
0.797285
0.797046
0.796807
0.796569
0.79633
0.796092
0.795699
0.795306
0.794913
0.79452
0.794128
0.793736
0.793133
0.792531
0.791929
0.791328
0.790727
0.790126
0.789526
0.789116
0.788705
0.788295
0.787885
0.787476
0.787066
0.786657
0.786248
0.785839
0.78543
0.785022
0.784614
0.784392
0.78417
0.783949
0.783727
0.783506
0.783284
0.783063
0.782842
0.78262
0.782399
0.782178
0.781957
0.781736
0.781371
0.781005
0.78064
0.780276
0.779911
0.779546
0.779182
0.778818
0.778454
0.77809
0.777727
0.777363
0.777
0.776637
0.77641
0.776184
0.775958
0.775732
0.775506
0.77528
0.775054
0.774828
0.774602
0.774376
0.774151
0.773925
0.7737
0.773474
0.773249
0.773023
0.772798
0.772573
0.772198
0.771824
0.77145
0.770874
0.770298
0.769722
0.769147
0.768573
0.767998
0.767425
0.766851
0.766278
0.765706
0.765134
0.764562
0.763991
0.76342
0.76285
0.76228
0.76171
0.761141
0.760572
0.760004
0.759698

2
2.00866
4.55741

0
1

1

Lytton WW, Hines ML (2005) Independent variable time-step integration of individual neurons for network simulations. Neural Comput 17:903-21[PubMed]

References and models cited by this paper

References and models that cite this paper

Abeles M (1991) Corticonics: Neural Circuits of the Cerebral Cortex.

Aviel Y, Mehring C, Abeles M, Horn D (2003) On embedding synfire chains in a balanced network. Neural Comput 15:1321-40 [PubMed]

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65 [Journal] [PubMed]

   Thalamocortical augmenting response (Bazhenov et al 1998) [Model]

Cohen S, Hindmarsh A (1994) Cvode user guide Tech Rep

Destexhe A, Mainen Z, Sejnowski TJ (1994) An efficient method for computing synaptic conductances based on a kinetic model of receptor binding Neural Comput 6:14-18 [Journal]

   Efficient Method for Computing Synaptic Conductance (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]
   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Hindmarsh A, Serban R (2002) User documentation for Cvodes, an ode solver with sensitivity analysis capabilities Tech Rep

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) ModelDB: A Database to Support Computational Neuroscience. J Comput Neurosci 17:7-11 [Journal] [PubMed]

Jones D (1986) An empirical comparison of priority-queue and event-setimplementations Comm Acm 4:300-311

Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501-9 [PubMed]

Makino T (2003) A discrete-event neural network simulator for general neuron models Neural Comput App 11:210-223

Mattia M, Del Giudice P (2000) Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Comput 12:2305-29 [PubMed]

Sleator D, Tarjan R (1983) Self adjusting binary trees Proc ACM SIGACT Symposium on Theory of Computing :235-245

Traub RD, Jefferys GR, Whittington MA (1999) Fast Oscillations In Cortical Circuits

Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76:1310-26 [Journal] [PubMed]

Wang XJ, Buzsaki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16:6402-13 [Journal] [PubMed]

   Gamma oscillations in hippocampal interneuron networks (Wang, Buzsaki 1996) [Model]

Watts L (1994) Event-driven simulation of networks of spiking neurons Advances in Neural Information Processing Systems, Cowan J:Tesauro G:Alspector J, ed. pp.927

Brette R (2006) Exact simulation of integrate-and-fire models with synaptic conductances. Neural Comput 18:2004-27 [PubMed]

Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, Bower JM, Diesmann M, Morrison A, et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. J Comp Neurosci 23:349-98 [Journal] [PubMed]

   Networks of spiking neurons: a review of tools and strategies (Brette et al. 2007) [Model]

Hines ML, Markram H, Schuermann F (2008) Fully Implicit Parallel Simulation of Single Neurons J Comp Neurosci 25:439-448 [Journal] [PubMed]

   Fully Implicit Parallel Simulation of Single Neurons (Hines et al. 2008) [Model]

Huang S, Hong S, De Schutter E (2015) Non-linear leak currents affect mammalian neuron physiology. Front Cell Neurosci 9:432 [Journal] [PubMed]

   Concentration dependent nonlinear K+ and Cl- leak current (Huang et al. 2015) [Model]

Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schurmann F, Hines ML (2016) Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput :1-28 [Journal] [PubMed]

   Parallelizing large networks in NEURON (Lytton et al. 2016) [Model]

McDougal RA, Hines ML, Lytton WW (2013) Reaction-diffusion in the NEURON simulator. Front Neuroinform 7:28 [Journal] [PubMed]

   Reaction-diffusion in the NEURON simulator (McDougal et al 2013) [Model]

Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [Journal] [PubMed]

   Parallel network simulations with NEURON (Migliore et al 2006) [Model]

Morrison A, Straube S, Plesser HE, Diesmann M (2007) Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Comput 19:47-79 [PubMed]

Rangan AV, Cai D (2007) Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. J Comput Neurosci 22:81-100 [Journal] [PubMed]

Ros E, Carrillo R, Ortigosa EM, Barbour B, Agis R (2006) Event-driven simulation scheme for spiking neural networks using lookup tables to characterize neuronal dynamics. Neural Comput 18:2959-93 [PubMed]

Rudolph M, Destexhe A (2006) Analytical Integrate-and-Fire Neuron Models with Conductance-Based Dynamics for Event-Driven Simulation Strategies. Neural Comput 18:2146-210 [PubMed]

(29 refs)