Ephaptic interactions in olfactory nerve (Bokil et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Bokil, H., Laaris, N., Blinder, K., Ennis, M., and Keller, A. (2001) Ephaptic interactions in the mammalian olfactory system. J. Neurosci. 21:RC173(1-5)
1 . Bokil H, Laaris N, Blinder K, Ennis M, Keller A (2001) Ephaptic interactions in the mammalian olfactory system. J Neurosci 21:RC173-RC173 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Axon; Extracellular;
Brain Region(s)/Organism:
Cell Type(s): Olfactory receptor neuron;
Gap Junctions:
Simulation Environment: NEURON;
Model Concept(s): Axonal Action Potentials; Extracellular Fields; Ephaptic coupling; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
Search NeuronDB for information about:  Olfactory receptor neuron;
// Bokil et. al. (2001) Ephaptic interactions in the mammalian olfactory system.
// J. Neurosci. 21:RC173(1-5)

// two passive cables with no connection to ground or extracellular conductance
// eventually grounded by a linear circuit
// for the passive case we'll stimulate at the middle to get
// second order correct spatial decay in the extracellular and unstimulated
// axon.

Ns=1	  // number of stimulated axons
N=2	  // total number of axons
beta=.05  // ratio of extracellular to axon cross sectional area

create a, b // a will be stimulated, b unstimulated
access a

// display as adjacent in shape plots
a { pt3dadd(0,0,0,1) pt3dadd(1,0,0,1) }
b { pt3dadd(0,100,0,1) pt3dadd(1,100,0,1) }

//physical properties of cable
forall {
	Ra = 100
	diam = .2
	L = 2000 // lambda2=sqrt(Rm*d/Ri/4) = .0129 cm
	insert extracellular  xg = 0
	xraxial = 1e9
	insert pas  e_pas = 0  g_pas = .0003

// The extracellular axial resistance is associated with axon a
// and has a value of (internal axial resistivity)*Ns/N/beta
// Axon b will be connected to the extracellular nodes of axon a by
// a linear mechanism in the extcelnet procedure

proc set_re() {
	// the extracellular mechanism for a is used to simulate the transverse
	// resistance (MOhm/cm)
	// resistivity of ri*Ns/N/beta = 4*Ra/PI/diam^2*Ns/N/beta*1e2 (meghohm/cm)
	a.xraxial = 4*Ra/PI/diam^2*Ns/N/beta*1e2

// a large conductance between the a.vext and b.vext connects the axons
// the conductance is asymmetric to account for N-Ns unstimulated identical
// axons. Ie i from b.vext to a.vext is N-Ns/Ns times larger than i from a to b
// There are a.nseg of these large conductance connections.

objref gmat, cmat, bvec, e, xl, layer, sl, lm
// must be called whenever nseg, Ns, or N is changed.
proc extcelnet() {local i, ns
	ns = a.nseg
	gmat = new Matrix(2*ns, 2*ns, 2) // sparse
	cmat = new Matrix(2*ns, 2*ns, 2) // sparse and 0
	bvec = new Vector(2*ns) // also 0
	e = new Vector(2*ns) // extracellular potential
	// order is all a then all b, the e nodes are equivalent to a.vext
	sl = new SectionList()
	xl = new Vector(2*ns)
	layer = new Vector(2*ns)
	layer.fill(1) // all connections are between a.vext and b.vext
	for i=0, ns-1 {
		a sl.append()
		xl.x[i] = (i+.5)/ns
	for i=0, ns-1 {
		b sl.append()
		xl.x[nseg + i] = (i+.5)/ns
	lm = new LinearMechanism(cmat, gmat, e, bvec, sl, xl, layer)
	// the above really only needs to be done when nseg changes
	// Following are the parameter dependent assignments.
	for i=0, ns-1 {
// the conductance is asymmetric to account for N-Ns unstimulated identical
// axons and Ns stimulated identical axons
		addg(i, ns+i, 10*(N-Ns), 10*Ns)

proc addg() {
	gmat.x[$1][$1] += $3
	gmat.x[$1][$2] -= $3
	gmat.x[$2][$1] -= $4
	gmat.x[$2][$2] += $4


xvalue("Number Stimulated Ns", "Ns", 1, "extcelnet()")
xvalue("Total Number N", "N", 1, "extcelnet()")
xvalue("beta", "beta", 1, "set_re()")

Loading data, please wait...