Thalamocortical augmenting response (Bazhenov et al 1998)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:37819
In the cortical model, augmenting responses were more powerful in the "input" layer compared with those in the "output" layer. Cortical stimulation of the network model produced augmenting responses in cortical neurons in distant cortical areas through corticothalamocortical loops and low-threshold intrathalamic augmentation. ... The predictions of the model were compared with in vivo recordings from neurons in cortical area 4 and thalamic ventrolateral nucleus of anesthetized cats. The known intrinsic properties of thalamic cells and thalamocortical interconnections can account for the basic properties of cortical augmenting responses. See reference for details. NEURON implementation note: cortical SU cells are getting slightly too little stimulation - reason unknown.
Reference:
1 . Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; Neocortex V1 pyramidal corticothalamic L6 cell;
Channel(s): I Na,t; I T low threshold; I A; I K,Ca;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synchronization; Synaptic Integration;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; Neocortex V1 pyramidal corticothalamic L6 cell; GabaA; GabaB; AMPA; I Na,t; I T low threshold; I A; I K,Ca; Gaba; Glutamate;
NEURON { SUFFIX kdr }
  
NEURON { USEION k READ ek WRITE ik }         

ASSIGNED { ik }

PARAMETER {
	ek 		= -95        (mV)
	erev 		= -95        (mV)
	gmax 		= 0.005     (umho)

        vrest           = 0.0
	mvalence 	= 2.8
	mgamma 		=  0.7
	mbaserate 	=  .13
	mvhalf 		=  -18
	mbasetau 	=  0.3
	mtemp 		=  36
	mq10		=  3.0
	mexp 		=  3

	hvalence 	= -6
	hgamma		=  0.3
	hbaserate 	=  0.095
	hvhalf 		=  -39
	hbasetau 	=  0.25
	htemp 		=  36
	hq10        =  3.
	hexp 		=  0



	cao                	 (mM)
	cai                  (mM)

	celsius			     (degC)
	dt 				     (ms)
	v 			         (mV)

	vmax 		= 100     (mV)
	vmin 		= -100   (mV)

} : end PARAMETER

INCLUDE "bg_cvode.inc"

PROCEDURE iassign () { i = g*(v-ek) ik=i }
:** kmbg 

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J Neurosci 18:6444-65[PubMed]

References and models cited by this paper

References and models that cite this paper

Avoli M (1986) Inhibitory potentials in neurons of the deep layers of the in vitro neocortical slice. Brain Res 370:165-70

Bal T, McCormick DA (1996) What stops synchronized thalamocortical oscillations? Neuron 17:297-308 [PubMed]

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Cellular and network models for intrathalamic augmenting responses during 10-Hz stimulation. J Neurophysiol 79:2730-48 [Journal] [PubMed]

Castro-Alamancos MA, Connors BW (1996) Spatiotemporal properties of short-term plasticity sensorimotor thalamocortical pathways of the rat. J Neurosci 16:2767-79 [PubMed]

Castro-Alamancos MA, Connors BW (1996) Cellular mechanisms of the augmenting response: short-term plasticity in a thalamocortical pathway. J Neurosci 16:7742-56 [PubMed]

Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406:443-68 [PubMed]

Contreras D, Curro Dossi R, Steriade M (1993) Electrophysiological properties of cat reticular thalamic neurones in vivo. J Physiol 470:273-94 [PubMed]

Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179-96 [PubMed]

Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15:604-22 [PubMed]

Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol 490 ( Pt 1):159-79 [PubMed]

Contreras D, Timofeev I, Steriade M (1996) Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494 ( Pt 1):251-64 [PubMed]

Crunelli V, Haby M, Jassik-Gerschenfeld D, Leresche N, Pirchio M (1988) Cl- - and K+-dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. J Physiol 399:153-76 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049-70 [Journal] [PubMed]

   Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996) [Model]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803-18 [Journal] [PubMed]

   Thalamic Reticular Network (Destexhe et al 1994) [Model]

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169-85 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996) [Model]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Durmuller N, Timofeev I, Grenier F, Steriade M (1998) Mechanisms of intracortical augmenting responses Soc Neurosci Abstr

Dutar P, Nicoll RA (1988) A physiological role for GABAB receptors in the central nervous system. Nature 332:156-8 [PubMed]

Enright WH, Higham DJ, Owren B, Sharp PW (1995) A survey of the explicit Runge-Kutta method. Available from ftp://ftp.cs.toronto.edu/pub/reports/na/cs-94-291.ps.Z

Ferster D, Lindstrom S (1985) Augmenting responses evoked in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. J Physiol 367:217-32 [PubMed]

Hernandez-Cruz A, Pape HC (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 61:1270-83 [Journal] [PubMed]

Hirsch JC, Burnod Y (1987) A synaptically evoked late hyperpolarization in the rat dorsolateral geniculate neurons in vitro. Neuroscience 23:457-68 [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of intracortical augmenting responses Soc Neurosci Abstr

Huguenard JR, Coulter DA, Prince DA (1991) A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation. J Neurophysiol 66:1304-15 [Journal] [PubMed]

Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373-83 [Journal] [PubMed]

Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804-17 [PubMed]

Huguenard JR, Prince DA (1994) Intrathalamic rhythmicity studied in vitro: nominal T-current modulation causes robust antioscillatory effects. J Neurosci 14:5485-502 [PubMed]

Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227-47 [PubMed]

Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205-26 [PubMed]

Jones EG (1985) The Thalamus

Kammermeier PJ, Jones SW (1997) High-voltage-activated calcium currents in neurons acutely isolated from the ventrobasal nucleus of the rat thalamus. J Neurophysiol 77:465-75 [Journal] [PubMed]

Kandel A, Buzsaki G (1997) Cellular-synaptic generation of sleep spindles, spike-and-wave discharges, and evoked thalamocortical responses in the neocortex of the rat. J Neurosci 17:6783-97 [PubMed]

Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 441:155-74 [PubMed]

Luthi A, Mccormick DA (1997) Both electrophysiological and biochemical oscillations determine spindle wave rhythmicity Soc Neurosci Abstr 23:1820

Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382:363-6 [Journal] [PubMed]

   [2 reconstructed morphologies on NeuroMorpho.Org]
   Pyramidal Neuron Deep, Superficial; Aspiny, Stellate (Mainen and Sejnowski 1996) [Model]

McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68:1384-400 [Journal] [PubMed]

McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291-318 [PubMed]

   Thalamic Relay Neuron: I-h (McCormick, Pape 1990) [Model]

Metherate R, Ashe JH (1994) Facilitation of an NMDA receptor-mediated EPSP by paired-pulse stimulation in rat neocortex via depression of GABAergic IPSPs. J Physiol 481 ( Pt 2):331-48 [PubMed]

Morin D, Steriade M (1981) Development from primary to augmenting responses in the somatosensory system. Brain Res 205:49-66 [PubMed]

Morison RS, Dempsey EW (1943) Mechanisms of thalamocortical augmentation and repetition Am J Physiol 138:297-308

Pare D, Dossi RC, Steriade M (1991) Three types of inhibitory postsynaptic potentials generated by interneurons in the anterior thalamic complex of cat. J Neurophysiol 66:1190-204 [Journal] [PubMed]

Pedroarena C, Llinas R (1997) Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. Proc Natl Acad Sci U S A 94:724-8

Soltesz I, Lightowler S, Leresche N, Jassik-Gerschenfeld D, Pollard CE, Crunelli V (1991) Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol 441:175-97 [PubMed]

Steriade M (1984) The excitatory-inhibitory response sequence of thalamic and neocortical cells: state related changes and regulatory systems Dynamic Aspects of Neocortical Function, Edelman GM:Gall WE:Cowan WM, ed. pp.107

Steriade M, Contreras D, Curro Dossi R, Nunez A (1993) 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13:3284-99

Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68-81 [PubMed]

Steriade M, Dossi RC, Nunez A (1991) Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. J Neurosci 11:3200-17 [PubMed]

Steriade M, Nunez A, Amzica F (1993) 1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13:3252-65 [PubMed]

Steriade M, Nunez A, Amzica F (1993) 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13:3266-83 [PubMed]

Steriade M, Timofeev I (1997) Short-term plasticity during intrathalamic augmenting responses in decorticated cats. J Neurosci 17:3778-95 [PubMed]

Steriade M, Timofeev I, Grenier F, Durmuller N (1998) Role of thalamic and cortical neurons in augmenting responses and self-sustained activity: dual intracellular recordings in vivo. J Neurosci 18:6425-43 [PubMed]

Steriade M, Wyzinski P, Apostol V (1972) Corticofugal projections governing rhythmic thalamic activity Corticothalamic Projections And Sensorimotor Activities, Frigyesi TL:Rinvik E:Yahr MD, ed. pp.221

Timofeev I, Contreras D, Steriade M (1996) Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. J Physiol 494 ( Pt 1):265-78 [PubMed]

Timofeev I, Steriade M (1996) Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76:4152-68 [Journal] [PubMed]

Timofeev I, Steriade M (1997) Fast (mainly 30-100 Hz) oscillations in the cat cerebellothalamic pathway and their synchronization with cortical potentials. J Physiol 504 ( Pt 1):153-68 [PubMed]

Timofeev I, Steriade M (1998) Cellular mechanisms underlying intrathalamic augmenting responses of reticular and relay neurons. J Neurophysiol 79:2716-29 [Journal] [PubMed]

Traub RD, Miles R (1991) Neuronal Networks Of The Hippocampus

Ulrich D, Huguenard JR (1997) Nucleus-specific chloride homeostasis in rat thalamus. J Neurosci 17:2348-54 [PubMed]

Zhou Q, Godwin DW, O'Malley DM, Adams PR (1997) Visualization of calcium influx through channels that shape the burst and tonic firing modes of thalamic relay cells. J Neurophysiol 77:2816-25 [Journal] [PubMed]

Chen XD, Shu SF, Kennedy DP, Willcox SC, Bayliss DA (2009) Subunit-specific effects of isoflurane on neuronal I-h in HCN1 knockout mice. J. Neurophysiol. 101:129-149 [Journal]

Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ (2002) Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J Physiol 542:599-617 [PubMed]

Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1999) Cortical and thalamic components of augmenting responses: A modeling study Neurocomputing 26-27:735-742

Karameh FN, Dahleh MA, Brown EN, Massaquoi SG (2006) Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency EEG phenomena. Biol Cybern 95:289-310 [PubMed]

Li X, Morita K, Robinson HP, Small M (2013) Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modelling study. J Neurophysiol 109(11):2739-2756 [Journal] [PubMed]

   L5 pyr. cell spiking control by oscillatory inhibition in distal apical dendrites (Li et al 2013) [Model]

Lytton WW (2006) Neural Query System: Data-mining from within the NEURON simulator. Neuroinformatics 4:163-76 [Journal] [PubMed]

   Neural Query System NQS Data-Mining From Within the NEURON Simulator (Lytton 2006) [Model]

Lytton WW, Hines ML (2005) Independent variable time-step integration of individual neurons for network simulations. Neural Comput 17:903-21 [Journal] [PubMed]

   Local variable time step method (Lytton, Hines 2005) [Model]

Rulkov NF, Timofeev I, Bazhenov M (2004) Oscillations in large-scale cortical networks: map-based model. J Comput Neurosci 17:203-23 [Journal] [PubMed]

   Large cortex model with map-based neurons (Rulkov et al 2004) [Model]

Sejnowski TJ, Destexhe A (2000) Why do we sleep? Brain Res 886:208-223 [PubMed]

Skorheim SW, Razak K, Bazhenov M (2014) Network models of frequency modulated sweep detection PLoS ONE 9(12):e115196 [Journal] [PubMed]

   Network models of frequency modulated sweep detection (Skorheim et al. 2014) [Model]

Sohal VS, Huntsman MM, Huguenard JR (2000) Reciprocal inhibitory connections regulate the spatiotemporal properties of intrathalamic oscillations. J Neurosci 20:1735-45 [PubMed]

(71 refs)