Touch Sensory Cells (T Cells) of the Leech (Cataldo et al. 2004) (Scuri et al. 2007)

 Download zip file 
Help downloading and running models
Accession:42036
Bursts of spikes in leech T cells produce an AHP, which results from activation of a Na+/K+ pump and a Ca2+-dependent K+ current. Activity-dependent increases in the AHP are believed to induce conduction block of spikes in several regions of the neuron, which in turn, may decrease presynaptic invasion of spikes and thereby decrease transmitter release. To explore this possibility, we used the neurosimulator SNNAP to develop a multi-compartmental model of the T cell. Each compartment was modeled as an equivalent electrical circuit, in which some currents were regulated by intracellular Ca2+ and Na+. The membrane model consisted of a membrane capacitance (Cm), for which we used the value 1 uF/cm2, in parallel with two inward currents (Na+ and Ca2+), two K+ currents, a leak current and pump current. The model incorporated empirical data that describe the geometry of the cell and activity-dependent changes of the AHP (see paper for details). Simulations indicated that at some branching points, activity-dependent increases of the AHP reduced the number of spikes transmitted from the minor receptive field to the soma and beyond. These results suggest that the AHP can regulate spike conduction within the presynaptic arborizations of the cell and could in principle contribute to the synaptic depression that is correlated with increases in the AHP.
References:
1 . Cataldo E, Brunelli M, Byrne JH, Av-Ron E, Cai Y, Baxter DA (2005) Computational Model of Touch Sensory Cells (T Cells) of the Leech: Role of the Afterhyperpolarization (AHP) in Activity-Dependent Conduction Failure Journal of Computational Neuroscience 18:5-24 [PubMed]
2 . Scuri R, Lombardo P, Cataldo E, Ristori C, Brunelli M (2007) Inhibition of Na+-K+ ATPase potentiates synaptic transmission in tactile sensory neurons of the leech. Eur J Neurosci 25:159-67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Electrogenic pump;
Brain Region(s)/Organism:
Cell Type(s): Leech T segmental sensory neuron;
Channel(s): I L high threshold; I K,Ca; I Sodium; I Potassium; Na/K pump;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s): Activity Patterns; Axonal Action Potentials; Action Potentials; Invertebrate; Conduction failure; Sodium pump;
Implementer(s): Cataldo, Enrico;
Search NeuronDB for information about:  I L high threshold; I K,Ca; I Sodium; I Potassium; Na/K pump;
/
Leech_T_Cell
Synaptic_Terminals_With_Varicosities
Synaptic_Terminals_Without_Varicosities
README.txt
C1_CA1.es *
C1_CP1.es *
C10IonCa.ion *
C10IonNa.ion *
C11IonCa.ion *
C11IonNa.ion *
C12IonCa.ion *
C12IonNa.ion *
C1IonCa.ion *
C1IonNa.ion *
C2IonCa.ion *
C2IonNa.ion *
C3IonCa.ion *
C3IonNa.ion *
C4IonCa.ion *
C4IonNa.ion *
C5IonCa.ion *
C5IonNa.ion *
C6IonCa.ion *
C6IonNa.ion *
C7IonCa.ion *
C7IonNa.ion *
C8IonCa.ion *
C8IonNa.ion *
C9IonCa.ion *
C9IonNa.ion *
Ca.A *
Ca.vdg *
Ca_Ion_Parameters_calculator-T_Final_Version.xls *
CA1_CA2.es *
CA1_CA7.es *
CA10_CA11.es *
CA10_CA12.es *
CA13_CA14.es *
CA13_CA17.es *
CA14_CA15.es *
CA14_CA16.es *
CA17_CA18.es *
CA17_CA19.es *
CA19_CA20.es *
CA19_CA21.es *
CA2_CA3.es *
CA2_CA4.es *
CA21_CA22.es *
CA21_CA23.es *
CA23_CA24.es *
CA23_CA25.es *
CA25_CA26.es *
CA26_CA27.es *
CA27_CA28.es *
CA28_CA29.es *
CA29_CA30.es *
CA30_CA31.es *
CA31_CA32.es *
CA32_CA33.es *
CA33_CA34.es *
CA34_CA35.es *
CA35_CA36.es *
CA36_CA37.es *
CA37_CA38.es *
CA38_CA39.es *
CA39_CA40.es *
CA39_CA41.es *
CA4_CA5.es *
CA4_CA6.es *
CA41_CA42.es *
CA41_CA43.es *
CA43_CA44.es *
CA43_CA45.es *
CA45_CA46.es *
CA45_CA49.es *
CA46_CA47.es *
CA47_CA48.es *
CA49_CA50.es *
CA49_CA51.es *
CA51_CA52.es *
CA51_CA53.es *
CA53_CA54.es *
CA53_CA57.es *
CA54_CA55.es *
CA55_CA56.es *
CA57_CA58.es *
CA57_CA59.es *
CA59_CA60.es *
CA59_CA61.es *
CA7_CA8.es *
CA7_CA9.es *
CA9_CA10.es *
CA9_CA13.es *
CP1_CP2.es *
CP1_CP3.es *
CP10_CP11.es *
CP12_CP13.es *
CP13_CP14.es *
CP13_CP16.es *
CP14_CP15.es *
CP16_CP17.es *
CP16_CP20.es *
CP17_CP18.es *
CP18_CP19.es *
CP2_CP4.es *
CP2_CP5.es *
CP20_CP21.es *
CP20_CP22.es *
CP22_CP23.es *
CP22_CP24.es *
CP24_CP25.es *
CP24_CP26.es *
CP26_CP27.es *
CP26_CP28.es *
CP28_CP29.es *
CP28_CP30.es *
CP3_CP10.es *
CP3_CP12.es *
CP30_CP31.es *
CP31_CP32.es *
CP32_CP33.es *
CP33_CP34.es *
CP34_CP35.es *
CP35_CP36.es *
CP36_CP37.es *
CP37_CP38.es *
CP38_CP39.es *
CP39_CP40.es *
CP40_CP41.es *
CP41_CP42.es *
CP42_CP43.es *
CP43_CP44.es *
CP44_CP45.es *
CP44_CP46.es *
CP46_CP47.es *
CP46_CP48.es *
CP48_CP49.es *
CP48_CP50.es *
CP5_CP6.es *
CP5_CP7.es *
CP50_CP51.es *
CP50_CP52.es *
CP52_CP53.es *
CP52_CP54.es *
CP54_CP55.es *
CP54_CP60.es *
CP55_CP56.es *
CP55_CP57.es *
CP57_CP58.es *
CP58_CP59.es *
CP60_CP61.es *
CP60_CP62.es *
CP62_CP63.es *
CP62_CP64.es *
CP64_CP65.es *
CP7_CP8.es *
CP8_CP9.es *
fBRIonCa.fBR *
fBRIonNa.fBR *
K.a *
K.vdg *
KCa.vdg *
leak.vdg *
Na.A *
Na.B *
Na.vdg *
Na_Ion_Parameters_calculator-T_Final_Version.xls *
NaPump.vdg *
neuC_1.neu *
neuC_10.neu *
neuC_11.neu *
neuC_12.neu *
neuC_2.neu *
neuC_3.neu *
neuC_4.neu *
neuC_5.neu *
neuC_6.neu *
neuC_7.neu *
neuC_8.neu *
neuC_9.neu *
neuO_1.neu *
neuO_10.neu *
neuO_11.neu *
neuO_12.neu *
neuO_13.neu *
neuO_14.neu *
neuO_15.neu *
neuO_2.neu *
neuO_3.neu *
neuO_4.neu *
neuO_5.neu *
neuO_6.neu *
neuO_7.neu *
neuO_8.neu *
neuO_9.neu *
O10IonCa.ion *
O10IonNa.ion *
O11IonCa.ion *
O11IonNa.ion *
O12IonCa.ion *
O12IonNa.ion *
O13IonCa.ion *
O13IonNa.ion *
O14IonCa.ion *
O14IonNa.ion *
O15IonCa.ion *
O15IonNa.ion *
O1IonCa.ion *
O1IonNa.ion *
O2IonCa.ion *
O2IonNa.ion *
O3IonCa.ion *
O3IonNa.ion *
O4IonCa.ion *
O4IonNa.ion *
O5IonCa.ion *
O5IonNa.ion *
O6IonCa.ion *
O6IonNa.ion *
O7IonCa.ion *
O7IonNa.ion *
O8IonCa.ion *
O8IonNa.ion *
O9IonCa.ion *
O9IonNa.ion *
ousgrf.def *
out.prn *
passive_biophysic_calculator-T_Final_Version.xls
simufiles.usd
Soma.neu *
Soma_C1.es *
SomaIonCa.ion *
SomaIonNa.ion *
T_Cell.ai
T_Cell.ntw
T_Cell.ous.mnu
T_Cell.smu.exec
T_Cell.smu.hmn
T_Cell.smu.ing
T_Cell.smu.out
T_Cell.smu.out.head
T_Cell_0.16nA_300msec.ous *
T_Cell_0.16nA_300msec.smu
T_Cell_0.16nA_300msec.trt
T_Cell_0.6nA_300msec.ous *
T_Cell_0.6nA_300msec.smu
T_Cell_0.6nA_300msec.trt
T_Cell_0.9nA_300msec.ous
T_Cell_0.9nA_300msec.smu
T_Cell_0.9nA_300msec.trt
T_Cell_17_Hz_Control_Intermittent_Conduction.ous
T_Cell_17_Hz_Control_Intermittent_Conduction.smu
T_Cell_17_Hz_Control_Intermittent_Conduction.trt
T_Cell_20_Hz_Activity_Dependent_Conduction.ous *
T_Cell_20_Hz_Activity_Dependent_Conduction.smu
T_Cell_20_Hz_Activity_Dependent_Conduction.trt
T_Cell_5nA_1msec.ous
T_Cell_5nA_1msec.smu
T_Cell_5nA_1msec.trt
T_Cell_66_Hz_Activity_Dependent_Conduction.ous *
T_Cell_66_Hz_Activity_Dependent_Conduction.smu
T_Cell_66_Hz_Activity_Dependent_Conduction.trt
T_Cell_Current_Underlying.ous
T_Cell_Current_Underlying.smu
T_Cell_Current_Underlying.trt
                            
README.txt

This simulation reproduces the model published 
in:

Cataldo E, Brunelli M, Byrne JH, Av-Ron E, Cai Y, Baxter DA
Computational Model of Touch Sensory Cells (T Cells) of the Leech:  Role of the Afterhyperpolarization (AHP) 
in Activity-Dependent Conduction Failure
Journal of Computational Neuroscience (in press)


NOTICE that these simulations are complex and take several minutes to load and (some of them) several hours to run!


Example use:

Start SNNAP (double click on the SNNAP.jar file)
click on "Run Simulation"
Then in the new window "File"->"Load Simulation"
browse to and load bph_mixmod.smu file to load a simulation
that creates a figure similar to Fig6C from the paper and click "Start"
See http://snnap.uth.tmc.edu/ to download SNNAP

Loading data, please wait...