Multiple modes of a conditional neural oscillator (Epstein, Marder 1990)

 Download zip file 
Help downloading and running models
Accession:42321
We present a model for a conditional bursting neuron consisting of five conductances: Hodgkin-Huxley type time- and voltage-dependent Na+ and K+ conductances, a calcium activated voltage-dependent K+ conductance, a calcium-inhibited time- and voltage-dependent Ca++ conductance, and a leakage Cl- conductance. Different bursting and silent modes and transitions between them are analyzed in the model and compared to bursting modes in experiment. See the paper for details.
Reference:
1 . Epstein IR, Marder E (1990) Multiple modes of a conditional neural oscillator. Biol Cybern 63:25-34 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Chloride; I Na,t; I K; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: SNNAP;
Model Concept(s): Bursting; Invertebrate;
Implementer(s): Baxter, Douglas;
Search NeuronDB for information about:  I Chloride; I Na,t; I K; I Sodium; I Calcium; I Potassium;
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>    modules name: vdg		>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Ivd:		> 	Current due to a voltage-dependent conductance	>
		>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

>------------------------------->--------------------------------------->
>				>		p			>
>	1			>	G= g x A x B 		(1)	>
>	model.A		>A<	>					>
>	model.B		>B<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	-72 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	2			>	Ivd= g x m x h 		(2)	>
>	model.m		>m<	>					>
>	model.h		>h<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	35 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
				>		p			>
	3			>	G= g x A		(3)	>
	Ca.A		>A<	>					>
	0.08 		>g<	>					>
	1 		>P<	>	Ivd = G x (V -E)		>
	150.00 		>E<	>					>
				>					>
>------------------------------->--------------------------------------->
>				>		p			>
>	4			>	Ivd= g x m 		(4)	>
>	model.m		>m<	>					>
>	0.012 		>g<	>					>
>	1 		>P<	>	Ivd = G x (V -E)		>
>	35 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->
>				>					>
>	5			>	Ivd = G x (V -E)	(5)	>
>	0.012 		>g<	>					>
>	-72 		>E<	>					>
>				>					>
>------------------------------->--------------------------------------->

END:

Loading data, please wait...