Olfactory bulb granule cell: effects of odor deprivation (Saghatelyan et al 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:50210
The model supports the experimental findings on the effects of postnatal odor deprivation, and shows that a -10mV shift in the Na activation or a reduction in the dendritic length of newborn GC could independently explain the observed increase in excitability.
Reference:
1 . Saghatelyan A,Roux P,Migliore M,Rochefort C,Desmaisons D,Charneau P,Shepherd GM, Lledo PM (2005) Activity-dependent adjustments of the inhibitory network in the olfactory bulb following early postnatal deprivation. Neuron 46:103-116 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Active Dendrites; Influence of Dendritic Geometry; Action Potentials;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral cell; Olfactory bulb main interneuron granule MC cell; AMPA; NMDA; I Na,t; I A; I K; Gaba; Glutamate;
/
saghatelyan
readme.txt
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanet.mod
gc-occ.hoc
mitral-occ.hoc
modeldb.zip
mosinit.hoc
occlusion.hoc
                            
TITLE K-DR
: K-DR current for Mitral Cells from Wang et al (1996)
: M.Migliore Jan. 2002

NEURON {
	SUFFIX kdrmt
	USEION k READ ek WRITE ik
	RANGE  gbar
	GLOBAL minf, mtau
}

PARAMETER {
	gbar = 0.002   	(mho/cm2)	
								
	celsius
	ek		(mV)            : must be explicitly def. in hoc
	v 		(mV)
	a0m=0.0035
	vhalfm=-50
	zetam=0.055
	gmm=0.5

	q10=3
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ik 		(mA/cm2)
	minf 		mtau (ms)	 	
}
 

STATE { m}

BREAKPOINT {
        SOLVE states METHOD cnexp
	ik = gbar*m*(v - ek)
} 

INITIAL {
	trates(v)
	m=minf  
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
}

PROCEDURE trates(v) {  
	LOCAL qt
        qt=q10^((celsius-24)/10)
        minf = 1/(1 + exp(-(v-21)/10))
	mtau = betm(v)/(qt*a0m*(1+alpm(v)))
}

FUNCTION alpm(v(mV)) {
  alpm = exp(zetam*(v-vhalfm)) 
}

FUNCTION betm(v(mV)) {
  betm = exp(zetam*gmm*(v-vhalfm)) 
}

Loading data, please wait...