Parallel network simulations with NEURON (Migliore et al 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:64229
The NEURON simulation environment has been extended to support parallel network simulations. The performance of three published network models with very different spike patterns exhibits superlinear speedup on Beowulf clusters.
Reference:
1 . Migliore M, Cannia C, Lytton WW, Markram H, Hines ML (2006) Parallel Network Simulations with NEURON. J Comp Neurosci 21:110-119 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
netmod
pardentategyrus
readme.html *
bgka.mod *
CaBK.mod *
ccanl.mod *
Gfluct2.mod *
gskch.mod *
hyperde3.mod *
ichan2.mod *
LcaMig.mod *
nca.mod *
tca.mod *
DG500_M7.hoc *
dgnetactivity.jpg *
dgnettraces.jpg *
init.hoc
initorig.hoc *
M2I10sp.txt
modstat *
mosinit.hoc *
parRI10sp.hoc
perfrun.hoc
RI10sp.hoc
test1.sh *
time *
                            
TITLE CaGk
: Calcium activated K channel.
: Modified from Moczydlowski and Latorre (1983) J. Gen. Physiol. 82

UNITS {
	(molar) = (1/liter)
}

UNITS {
	(mV) =	(millivolt)
	(mA) =	(milliamp)
	(mM) =	(millimolar)
}


NEURON {
	SUFFIX cagk
	USEION nca READ ncai VALENCE 2
	USEION lca READ lcai VALENCE 2
	USEION tca READ tcai VALENCE 2
	USEION k READ ek WRITE ik
	RANGE gkbar,gkca, ik
	GLOBAL oinf, otau
}

UNITS {
	FARADAY = (faraday)  (kilocoulombs)
	R = 8.313424 (joule/degC)
}

PARAMETER {
	celsius		(degC)
	v		(mV)
	gkbar=.01	(mho/cm2)	: Maximum Permeability
	cai = 5.e-5	(mM)
	ek		(mV)

	d1 = .84
	d2 = 1.
	k1 = .48e-3	(mM)
	k2 = .13e-6	(mM)
	abar = .28	(/ms)
	bbar = .48	(/ms)
        st=1            (1)
	lcai		(mV)
	ncai		(mV)
	tcai		(mV)
}

ASSIGNED {
	ik		(mA/cm2)
	oinf
	otau		(ms)
        gkca          (mho/cm2)
}

INITIAL {
	cai= ncai + lcai + tcai
        rate(v,cai)
        o=oinf
}

STATE {	o }		: fraction of open channels

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkca = gkbar*o^st
	ik = gkca*(v - ek)
}

DERIVATIVE state {	: exact when v held constant; integrates over dt step
	rate(v, cai)
	o' = (oinf - o)/otau
}

FUNCTION alp(v (mV), c (mM)) (1/ms) { :callable from hoc
	alp = c*abar/(c + exp1(k1,d1,v))
}

FUNCTION bet(v (mV), c (mM)) (1/ms) { :callable from hoc
	bet = bbar/(1 + c/exp1(k2,d2,v))
}

FUNCTION exp1(k (mM), d, v (mV)) (mM) { :callable from hoc
	exp1 = k*exp(-2*d*FARADAY*v/R/(273.15 + celsius))
}

PROCEDURE rate(v (mV), c (mM)) { :callable from hoc
	LOCAL a
	a = alp(v,c)
	otau = 1/(a + bet(v, c))
	oinf = a*otau
}


Loading data, please wait...