Hippocampus temporo-septal engram shift model (Lytton 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7400
Temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
Reference:
1 . Lytton WW, Lipton P (1999) Can the hippocampus tell time? The temporo-septal engram shift model. Neuroreport 10:2301-6 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Simplified Models;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  GabaA; AMPA; I Na,t; I K;
/
lytton99
README
AMPA.mod
GABAA.mod
kdr.mod
matrix.mod *
naf.mod *
passiv.mod *
pulse.mod *
sinstim.mod *
vecst.mod
vecst.mod.orig
bg.inc *
bg_cvode.inc
boxes.hoc *
declist.hoc *
decvec.hoc *
default.hoc *
directory
fig1.gif
grvec.hoc
init.hoc
ivl.vecs
labels.hoc
loadr.hoc *
local.hoc
mosinit.hoc
net.hoc
netcon.inc
nrnoc.hoc
ovl.vecs
params.hoc *
params.hoc.SAV *
proc.hoc
run.hoc
simctrl.hoc *
spkts.hoc
syncode.hoc
tmpl.hoc
                            
: $Id: bg_cvode.inc,v 1.5 1998/06/09 23:44:56 billl Exp $
TITLE Kevin's Cvode modification to Borg Graham Channel Model

COMMENT

Modeling the somatic electrical response of hippocampal pyramidal neurons, 
MS thesis, MIT, May 1987.

Each channel has activation and inactivation particles as in the original
Hodgkin Huxley formulation.  The activation particle mm and inactivation
particle hh go from on to off states according to kinetic variables alpha
and beta which are voltage dependent.  The form of the alpha and beta
functions were dissimilar in the HH study.  The BG formulae are:
	alpha = base_rate * Exp[(v - v_half)*valence*gamma*F/RT]
	beta = base_rate * Exp[(-v + v_half)*valence*(1-gamma)*F/RT]
where,
	baserate : no affect on Inf.  Lowering this increases the maximum
		    value of Tau
	basetau : (in msec) minimum Tau value.
	chanexp : number for exponentiating the state variable; e.g.
		  original HH Na channel use m^3, note that chanexp = 0
		  will turn off this state variable
	erev : reversal potential for the channel
	gamma : (between 0 and 1) does not affect the Inf but makes the
		Tau more asymetric with increasing deviation from 0.5
	celsius : temperature at which experiment was done (Tau will
		      will be adjusted using a q10 of 3.0)
	valence : determines the steepness of the Inf sigmoid.  Higher
		  valence gives steeper sigmoid.
	vhalf : (a voltage) determines the voltage at which the value
		 of the sigmoid function for Inf is 1/2
	vmin, vmax : limits for construction of the table.  Generally,
		     these should be set to the limits over which either
		     of the 2 state variables are varying.
        vrest : (a voltage) voltage shift for vhalf

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	RANGE gmax, g, i
	GLOBAL erev, Inf, Tau, vmin, vmax, vrest
} : end NEURON

CONSTANT {
	  FARADAY = 96489.0	: Faraday's constant
	  R= 8.31441		: Gas constant

} : end CONSTANT

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(umho) = (micromho)
} : end UNITS


COMMENT
** Parameter values should come from files specific to particular channels
PARAMETER {
	erev 		= 0    (mV)
	gmax 		= 0    (mho/cm^2)
        vrest           = 0    (mV)

	mvalence 	= 0
	mgamma 		= 0
	mbaserate 	= 0
	mvhalf 		= 0
	mbasetau 	= 0
	mtemp 		= 0
	mq10		= 3
	mexp 		= 0

	hvalence 	= 0
	hgamma		= 0
	hbaserate 	= 0
	hvhalf 		= 0
	hbasetau 	= 0
	htemp 		= 0
	hq10		= 3
	hexp 		= 0

	cao                (mM)
	cai                (mM)

	celsius			   (degC)
	dt 				   (ms)
	v 			       (mV)

	vmax 		= 100  (mV)
	vmin 		= -100 (mV)
} : end PARAMETER
ENDCOMMENT

ASSIGNED {
	i (mA/cm^2)		
	g (mho/cm^2)
	Inf[2]		: 0 = m and 1 = h
	Tau[2]		: 0 = m and 1 = h
} : end ASSIGNED 

STATE { m h }

INITIAL { 
 	mh(v)
 	m = Inf[0] h = Inf[1]
}

BREAKPOINT {

	LOCAL hexp_val, index, mexp_val

	SOLVE states METHOD cnexp

	hexp_val = 1
	mexp_val = 1

	: Determining h's exponent value
	if (hexp > 0) {
		FROM index=1 TO hexp {
			hexp_val = h * hexp_val
		}
	}

	: Determining m's exponent value
	if (mexp > 0) {
		FROM index = 1 TO mexp {
			mexp_val = m * mexp_val
		}
	}

	:			       mexp			    hexp
	: Note that mexp_val is now = m      and hexp_val is now = h 
	g = gmax * mexp_val * hexp_val
	iassign()
} : end BREAKPOINT

: ASSIGNMENT PROCEDURES
: Must be overwritten by user routines in parameters.multi
: PROCEDURE iassign () { i = g*(v-erev) ina=i }
: PROCEDURE iassign () { i = g*ghkca(v) ica=i }

:-------------------------------------------------------------------

DERIVATIVE states {
	mh(v)
	m' = (-m + Inf[0]) / Tau[0] 
	h' = (-h + Inf[1]) / Tau[1]
 }
:-------------------------------------------------------------------
: NOTE : 0 = m and 1 = h
PROCEDURE mh (v) {
	LOCAL a, b, j, mqq10, hqq10
	TABLE Inf, Tau DEPEND hbaserate, hbasetau, hexp, hgamma, htemp, hvalence, hvhalf, mbaserate, mbasetau, mexp, mgamma, mtemp, mvalence, mvhalf, celsius, mq10, hq10, vrest, vmin, vmax  FROM vmin TO vmax WITH 200

	mqq10 = mq10^((celsius-mtemp)/10.)	
	hqq10 = hq10^((celsius-htemp)/10.)	

	: Calculater Inf and Tau values for h and m
	FROM j = 0 TO 1 {
		a = alpha (v, j)
		b = beta (v, j)

		Inf[j] = a / (a + b)

		VERBATIM
		switch (_lj) {
			case 0:
		/* Make sure Tau is not less than the base Tau */
				if ((Tau[_lj] = 1 / (_la + _lb)) < mbasetau) {
					Tau[_lj] = mbasetau;
				}
				Tau[_lj] = Tau[_lj] / _lmqq10;
				break;
			case 1:
				if ((Tau[_lj] = 1 / (_la + _lb)) < hbasetau) {
					Tau[_lj] = hbasetau;
				}
				Tau[_lj] = Tau[_lj] / _lhqq10;
				if (hexp==0) {
					Tau[_lj] = 1.; }
				break;
		}

		ENDVERBATIM
	}
} : end PROCEDURE mh (v)
:-------------------------------------------------------------------
FUNCTION alpha(v,j) {
	if (j == 1) {
	   if (hexp==0) {
	     alpha = 1
	   } else {
             alpha = hbaserate * exp((v - (hvhalf+vrest)) * hvalence * hgamma * FRT(htemp)) }
	} else {
          alpha = mbaserate * exp((v - (mvhalf+vrest)) * mvalence * mgamma * FRT(mtemp))
	}
} : end FUNCTION alpha (v,j)

:-------------------------------------------------------------------
FUNCTION beta (v,j) {
	if (j == 1) {
	   if (hexp==0) {
                beta = 1
	   } else {
		beta = hbaserate * exp((-v + (hvhalf+vrest)) * hvalence * (1 - hgamma) * FRT(htemp)) }
	} else {
		beta = mbaserate * exp((-v + (mvhalf+vrest)) * mvalence * (1 - mgamma) * FRT(mtemp))
	}
} : end FUNCTION beta (v,j)

:-------------------------------------------------------------------
FUNCTION FRT(temperature) {
	FRT = FARADAY * 0.001 / R / (temperature + 273.15)
} : end FUNCTION FRT (temperature)

:-------------------------------------------------------------------
 FUNCTION ghkca (v) { : Goldman-Hodgkin-Katz eqn
       LOCAL nu, efun

       nu = v*2*FRT(celsius)
       if(fabs(nu) < 1.e-6) {
               efun = 1.- nu/2.
       } else {
               efun = nu/(exp(nu)-1.) }

       ghkca = -FARADAY*2.e-3*efun*(cao - cai*exp(nu))
 } : end FUNCTION ghkca()

Lytton WW, Lipton P (1999) Can the hippocampus tell time? The temporo-septal engram shift model. Neuroreport 10:2301-6[PubMed]

References and models cited by this paper

References and models that cite this paper

Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 91:7041-5 [PubMed]

Anderson P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222-38 [PubMed]

Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-56 [PubMed]

Cavazos JE, Golarai G, Sutula TP (1992) Septotemporal variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats. Hippocampus 2:363-72 [PubMed]

Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435-58 [PubMed]

Damasio AR (1990) Category-related recognition defects as a clue to the neural substrates of knowledge. Trends Neurosci 13:95-8 [PubMed]

Davis BD (1985) Sleep and the maintenance of memory. Perspect Biol Med 28:457-64 [PubMed]

Giuditta A, Ambrosini MV, Montagnese P, Mandile P, Cotugno M, Grassi Zucconi G, Vescia S (1995) The sequential hypothesis of the function of sleep. Behav Brain Res 69:157-66 [PubMed]

Grunwald T, Lehnertz K, Heinze HJ, Helmstaedter C, Elger CE (1998) Verbal novelty detection within the human hippocampus proper. Proc Natl Acad Sci U S A 95:3193-7 [PubMed]

Hennevin E, Hars B, Maho C, Bloch V (1995) Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69:125-35 [PubMed]

Holscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can Be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470-7 [PubMed]

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554-8 [PubMed]

Lepage M, Habib R, Tulving E (1998) Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8:313-22 [PubMed]

Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699-710 [PubMed]

Lytton WW (1998) Adapting a feedforward heteroassociative network to Hodgkin-Huxley dynamics. J Comput Neurosci 5:353-64 [Journal] [PubMed]

   Feedforward heteroassociative network with HH dynamics (Lytton 1998) [Model]

Meador-Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O, Watson SJ (1994) Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology 10:239-48 [PubMed]

Melges FT, Freeman AM (1977) Temporal disorganization and inner-outer confusion in acute mental illness. Am J Psychiatry 134:874-7 [PubMed]

Moser MB, Moser EI (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535-42 [PubMed]

Nyberg L, McIntosh AR, Cabeza R, Habib R, Houle S, Tulving E (1996) General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc Natl Acad Sci U S A 93:11280-5 [PubMed]

O'Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661-82 [PubMed]

Ott BR, Saver JL (1993) Unilateral amnesic stroke. Six new cases and a review of the literature. Stroke 24:1033-42 [PubMed]

Poucet B, Thinus-Blanc C, Muller RU (1994) Place cells in the ventral hippocampus of rats. Neuroreport 5:2045-8 [PubMed]

Shen B, McNaughton BL (1996) Modeling the spontaneous reactivation of experience-specific hippocampal cell assembles during sleep. Hippocampus 6:685-92 [PubMed]

Sigala S, Missale C, Spano P (1997) Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. Eur J Pharmacol 336:107-12 [PubMed]

Slomianka L, Geneser FA (1993) Distribution of acetylcholinesterase in the hippocampal region of the mouse. III. The area dentata. J Comp Neurol 331:225-35 [PubMed]

Squire LR (1982) Comparisons between forms of amnesia: some deficits are unique to Korsakoff's syndrome. J Exp Psychol Learn Mem Cogn 8:560-71 [PubMed]

Squire LR, Spanis CW (1984) Long gradient of retrograde amnesia in mice: continuity with the findings in humans. Behav Neurosci 98:345-8 [PubMed]

Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 100:147-54 [PubMed]

Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374-91 [PubMed]

Trimble MR (1991) Interictal psychoses of epilepsy. Adv Neurol 55:143-52 [PubMed]

Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A 91:2016-20 [PubMed]

Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198-204 [PubMed]

Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039-52 [PubMed]

Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676-9 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

(36 refs)