Hippocampus temporo-septal engram shift model (Lytton 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7400
Temporo-septal engram shift model of hippocampal memory. The model posits that memories gradually move along the hippocampus from a temporal encoding site to ever more septal sites from which they are recalled. We propose that the sense of time is encoded by the location of the engram along the temporo-septal axis.
Reference:
1 . Lytton WW, Lipton P (1999) Can the hippocampus tell time? The temporo-septal engram shift model. Neuroreport 10:2301-6 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Simplified Models;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu];
Search NeuronDB for information about:  GabaA; AMPA; I Na,t; I K;
/
lytton99
README
AMPA.mod
GABAA.mod
kdr.mod
matrix.mod *
naf.mod *
passiv.mod *
pulse.mod *
sinstim.mod *
vecst.mod
vecst.mod.orig
bg.inc *
bg_cvode.inc
boxes.hoc *
declist.hoc *
decvec.hoc *
default.hoc *
directory
fig1.gif
grvec.hoc
init.hoc
ivl.vecs
labels.hoc
loadr.hoc *
local.hoc
mosinit.hoc
net.hoc
netcon.inc
nrnoc.hoc
ovl.vecs
params.hoc *
params.hoc.SAV *
proc.hoc
run.hoc
simctrl.hoc *
spkts.hoc
syncode.hoc
tmpl.hoc
                            
: $Id$ 
TITLE passive membrane channel

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
}

INDEPENDENT { v FROM -100 TO 50 WITH 50	(mV) }

NEURON {
	SUFFIX Pass
	NONSPECIFIC_CURRENT i
	RANGE g, erev
}

PARAMETER {
	g = .001	(mho/cm2)
	erev = -70	(mV)
}

ASSIGNED { i	(mA/cm2)}

BREAKPOINT {
	i = g*(v - erev)
        VERBATIM
        in_passiv_breakpoint();
        ENDVERBATIM
}

VERBATIM
void in_passiv_breakpoint() {}
ENDVERBATIM



COMMENT
The passive channel is very simple but illustrates several features of
the interface to NEURON. As a SCoP or hoc model the NEURON block is
ignored.  About the only thing you can do with this as an isolated channel
in SCoP is plot the current vs the potential. Notice that models require
that all variables be declared, The calculation is done in the EQUATION
block (This name may eventually be changed to MODEL).  The intended
semantics of the equation block are that after the block is executed, ALL
variables are consistent with the value of the independent variable.
In this case, of course a trivial assignment statement suffices.
In SCoP, INDEPENDENT gives the name and range of the independent variable,
CONSTANT declares variables which generally do not change during
solution of the EQUATION block and ASSIGNED declares variables which
get values via assignment statements (as opposed to STATE variables whose
values can only be determined by solving differential or simultaneous
algebraic equations.)  The values of CONSTANTS are the default values
and can be changed in SCoP.

The NEURON block serves as the interface to NEURON. One has to imagine
many models linked to NEURON at the same time. Therefore in order to
avoid conflicts with names of variables in other mechanisms a SUFFIX
is applied to all the declared names that are accessible from NEURON.
Accessible CONSTANTS are of two types. Those appearing in the
PARAMETER list become range variables that can be used in any section
in which the mechanism is "insert"ed.  CONSTANT's that do not appear in
the PARAMETER list become global scalars which are the same for every
section.  ASSIGNED variables and STATE variables also become range variables
that depend on position in a section.
NONSPECIFIC_CURRENT specifies a list of currents not associated with
any particular ion but computed by this model
that affect the calculation of the membrane potential. I.e. a nonspecific
current adds its contribution to the total membrane current.

The following  neuron program is suitable for investigating the behavior
of the channel and determining its effect on the membrane.
create a
access a
nseg = 1
insert Passive
g_Passive=.001
erev_Passive=0
proc cur() {
	axis(0,1,1,0,.001,1) axis()
	plot(1)
	for (v=0; v < 1; v=v+.01) {
		fcurrent()
		plot(v, i_Passive)
	}
	plt(-1)
}	

proc run() {
	axis(0,3,3,0,1,1) axis()
	t = 0
	v=1
	plot(1)
	while (t < 3) {
		plot(t,v)
		fadvance()
	}
}
/* the cur() procedure uses the fcurrent() function of neuron to calculate
all the currents and conductances with all states (including v) held
constant.  In the run() procedure fadvance() integrates all equations
by one time step. In this case the Passive channel in combination with
the default capacitance of 1uF/cm2 give a membrane with a time constant of
1 ms. Thus the voltage decreases exponentially toward 0 from its initial
value of 1.

ENDCOMMENT

Lytton WW, Lipton P (1999) Can the hippocampus tell time? The temporo-septal engram shift model. Neuroreport 10:2301-6[PubMed]

References and models cited by this paper

References and models that cite this paper

Alvarez P, Squire LR (1994) Memory consolidation and the medial temporal lobe: a simple network model. Proc Natl Acad Sci U S A 91:7041-5 [PubMed]

Anderson P, Bliss TV, Skrede KK (1971) Lamellar organization of hippocampal pathways. Exp Brain Res 13:222-38 [PubMed]

Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-56 [PubMed]

Cavazos JE, Golarai G, Sutula TP (1992) Septotemporal variation of the supragranular projection of the mossy fiber pathway in the dentate gyrus of normal and kindled rats. Hippocampus 2:363-72 [PubMed]

Claiborne BJ, Amaral DG, Cowan WM (1986) A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J Comp Neurol 246:435-58 [PubMed]

Damasio AR (1990) Category-related recognition defects as a clue to the neural substrates of knowledge. Trends Neurosci 13:95-8 [PubMed]

Davis BD (1985) Sleep and the maintenance of memory. Perspect Biol Med 28:457-64 [PubMed]

Giuditta A, Ambrosini MV, Montagnese P, Mandile P, Cotugno M, Grassi Zucconi G, Vescia S (1995) The sequential hypothesis of the function of sleep. Behav Brain Res 69:157-66 [PubMed]

Grunwald T, Lehnertz K, Heinze HJ, Helmstaedter C, Elger CE (1998) Verbal novelty detection within the human hippocampus proper. Proc Natl Acad Sci U S A 95:3193-7 [PubMed]

Hennevin E, Hars B, Maho C, Bloch V (1995) Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69:125-35 [PubMed]

Holscher C, Anwyl R, Rowan MJ (1997) Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can Be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17:6470-7 [PubMed]

Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554-8 [PubMed]

Lepage M, Habib R, Tulving E (1998) Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus 8:313-22 [PubMed]

Loy R, Koziell DA, Lindsey JD, Moore RY (1980) Noradrenergic innervation of the adult rat hippocampal formation. J Comp Neurol 189:699-710 [PubMed]

Lytton WW (1998) Adapting a feedforward heteroassociative network to Hodgkin-Huxley dynamics. J Comput Neurosci 5:353-64 [Journal] [PubMed]

   Feedforward heteroassociative network with HH dynamics (Lytton 1998) [Model]

Meador-Woodruff JH, Grandy DK, Van Tol HH, Damask SP, Little KY, Civelli O, Watson SJ (1994) Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology 10:239-48 [PubMed]

Melges FT, Freeman AM (1977) Temporal disorganization and inner-outer confusion in acute mental illness. Am J Psychiatry 134:874-7 [PubMed]

Moser MB, Moser EI (1998) Distributed encoding and retrieval of spatial memory in the hippocampus. J Neurosci 18:7535-42 [PubMed]

Nyberg L, McIntosh AR, Cabeza R, Habib R, Houle S, Tulving E (1996) General and specific brain regions involved in encoding and retrieval of events: what, where, and when. Proc Natl Acad Sci U S A 93:11280-5 [PubMed]

O'Reilly RC, McClelland JL (1994) Hippocampal conjunctive encoding, storage, and recall: avoiding a trade-off. Hippocampus 4:661-82 [PubMed]

Ott BR, Saver JL (1993) Unilateral amnesic stroke. Six new cases and a review of the literature. Stroke 24:1033-42 [PubMed]

Poucet B, Thinus-Blanc C, Muller RU (1994) Place cells in the ventral hippocampus of rats. Neuroreport 5:2045-8 [PubMed]

Shen B, McNaughton BL (1996) Modeling the spontaneous reactivation of experience-specific hippocampal cell assembles during sleep. Hippocampus 6:685-92 [PubMed]

Sigala S, Missale C, Spano P (1997) Opposite effects of dopamine D2 and D3 receptors on learning and memory in the rat. Eur J Pharmacol 336:107-12 [PubMed]

Slomianka L, Geneser FA (1993) Distribution of acetylcholinesterase in the hippocampal region of the mouse. III. The area dentata. J Comp Neurol 331:225-35 [PubMed]

Squire LR (1982) Comparisons between forms of amnesia: some deficits are unique to Korsakoff's syndrome. J Exp Psychol Learn Mem Cogn 8:560-71 [PubMed]

Squire LR, Spanis CW (1984) Long gradient of retrograde amnesia in mice: continuity with the findings in humans. Behav Neurosci 98:345-8 [PubMed]

Teyler TJ, DiScenna P (1986) The hippocampal memory indexing theory. Behav Neurosci 100:147-54 [PubMed]

Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374-91 [PubMed]

Trimble MR (1991) Interictal psychoses of epilepsy. Adv Neurol 55:143-52 [PubMed]

Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S (1994) Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A 91:2016-20 [PubMed]

Tulving E, Markowitsch HJ (1998) Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198-204 [PubMed]

Verney C, Baulac M, Berger B, Alvarez C, Vigny A, Helle KB (1985) Morphological evidence for a dopaminergic terminal field in the hippocampal formation of young and adult rat. Neuroscience 14:1039-52 [PubMed]

Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676-9 [PubMed]

Hines ML, Carnevale NT (2001) NEURON: a tool for neuroscientists. Neuroscientist 7:123-35 [Journal] [PubMed]

   Spatial gridding and temporal accuracy in NEURON (Hines and Carnevale 2001) [Model]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

(36 refs)