Dendritica (Vetter et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:7907
Dendritica is a collection of programs for relating dendritic geometry and signal propagation. The programs are based on those used for the simulations described in: Vetter, P., Roth, A. & Hausser, M. (2001) For reprint requests and additional information please contact Dr. M. Hausser, email address: m.hausser@ucl.ac.uk
Reference:
1 . Vetter P, Roth A, Häusser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926-37 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Cerebellum Purkinje GABA cell;
Channel(s): I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Bursting; Active Dendrites; Influence of Dendritic Geometry; Detailed Neuronal Models; Axonal Action Potentials; Action Potentials;
Implementer(s): Hausser, M [M.Hausser at ucl.ac.uk];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; Hippocampus CA3 pyramidal GLU cell; Cerebellum Purkinje GABA cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I Na,t; I L high threshold; I p,q; I K; I M; I K,Ca;
Files displayed below are from the implementation
/
dendritica-1.1
batch_back
back
mod
kvz_naz
SGI
ca.mod *
cad.mod *
childa.mod *
iqq.mod *
kadist.mod
kaprox.mod
kca.mod *
km.mod *
kvz_nature.mod *
naz_nature.mod *
peak.mod
syn2.mod *
mod_func.c
special_kvznaz *
                            
: this model is built-in to neuron with suffix syn2

COMMENT
synaptic current with exponential rise and decay conductance defined by
        i = g * (v - e)      i(nanoamps), g(micromhos);
        where
         g = 0 for t < onset and
         g=amp*((1-exp(-(t-onset)/tau0))-(1-exp(-(t-onset)/tau1)))
          for t > onset
ENDCOMMENT
					       
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	POINT_PROCESS syn2
	RANGE onset, tau0, tau1, gmax, e, i, myv
	NONSPECIFIC_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	onset=0  (ms)
	tau0=0.2 (ms)
	tau1=3.0 (ms)
	gmax=0 	 (umho)
	e=0	 (mV)
	v	 (mV)
}

ASSIGNED { i (nA)  g (umho) myv (mV)}

LOCAL   a[2]
LOCAL   tpeak
LOCAL   adjust
LOCAL   amp

BREAKPOINT {
	myv = v
        g = cond(t)
	i = g*(v - e)
}

FUNCTION myexp(x) {
	if (x < -100) {
	myexp = 0
	}else{
	myexp = exp(x)
	}
}

FUNCTION cond(x) {
	tpeak=tau0*tau1*log(tau0/tau1)/(tau0-tau1)
	adjust=1/((1-myexp(-tpeak/tau0))-(1-myexp(-tpeak/tau1)))
	amp=adjust*gmax
	if (x < onset) {
		cond = 0
	}else{
		a[0]=1-myexp(-(x-onset)/tau0)
		a[1]=1-myexp(-(x-onset)/tau1)
		cond = amp*(a[0]-a[1])
	}
}

Loading data, please wait...