Cerebellar purkinje cell: interacting Kv3 and Na currents influence firing (Akemann, Knopfel 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:80769
Purkinje neurons spontaneously generate action potentials in the absence of synaptic drive and thereby exert a tonic, yet plastic, input to their target cells in the deep cerebellar nuclei. Purkinje neurons express two ionic currents with biophysical properties that are specialized for high-frequency firing: resurgent sodium currents and potassium currents mediated by Kv3.3. Numerical simulations indicated that Kv3.3 increases the spontaneous firing rate via cooperation with resurgent sodium currents. We conclude that the rate of spontaneous action potential firing of Purkinje neurons is controlled by the interaction of Kv3.3 potassium currents and resurgent sodium currents. See paper for more and details.
Reference:
1 . Akemann W, Knopfel T (2006) Interaction of Kv3 potassium channels and resurgent sodium current influences the rate of spontaneous firing of Purkinje neurons. J Neurosci 26:4602-12 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum purkinje cell;
Channel(s): I Na,t; I A; I K; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s): Kv1.1 KCNA1; Kv4.3 KCND3; Kv3.3 KCNC3; HCN1;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Oscillations; Action Potentials; Calcium dynamics;
Implementer(s): Akemann, Walther [akemann at brain.riken.jp];
Search NeuronDB for information about:  Cerebellum purkinje cell; I Na,t; I A; I K; I h; I K,Ca; I Calcium;
This is the readme.txt for the model associated with the paper:

Akemann W, Knopfel T. Interaction of Kv3 potassium channels and
resurgent sodium current influences the rate of spontaneous firing of
Purkinje neurons. J Neurosci. 2006 Apr 26;26(17):4602-12.

These files were supplied by Akemann and Knopfel.

To use: simply autolaunch from ModelDB or 

1) download and extract the archive (zip file). 
2) Compile the mod files with the appropriate method (unix - run
nrnivmodl in the directory, mswin - run mknrndll in the directory
expanded from the archive, mac - drag the folder expanded from the
archive to the mknrndll icon in the Neuron folder)
3) run the model (in unix - nrngui mosinit.hoc, mswin - double click
on the mosinit.hoc file, mac - drag the mosinit.hoc file to the nrngui
icon in the Neuron folder)

6/8/2007 version updated: a short demonstration run has been added.

Loading data, please wait...