Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)

 Download zip file 
Help downloading and running models
Accession:84593
"... Recent investigations in primary visual (V1) cortical neurons have demonstrated that adaptation to prolonged changes in stimulus contrast is mediated in part through intrinsic ionic currents, a Ca2+ activated K+ current (IKCa) and especially a Na+ activated K+ current (IKNa). The present study was designed to test the hypothesis that the activation of adaptation ionic currents may provide a cellular mechanism for temporal decorrelation in V1. A conductance-based neuron model was simulated, which included an IKCa and an IKNa. We show that the model neuron reproduces the adaptive behavior of V1 neurons in response to high contrast inputs. ...". See paper for details and more.
Reference:
1 . Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89:3279-93 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 pyramidal intratelencephalic L2-5 cell;
Channel(s): I Na,t; I L high threshold; I K; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Ion Channel Kinetics; Temporal Pattern Generation; Oscillations; Calcium dynamics;
Implementer(s): Wang, Xiao-Jing [xjwang at yale.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal intratelencephalic L2-5 cell; I Na,t; I L high threshold; I K; I Calcium; I Potassium;
  
/
decorr-model
images
readme.html
driver.c
header.h
myutils.c
nrutil.c
nrutil.h
rk4.c
                            

Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89:3279-93[PubMed]

References and models cited by this paper

References and models that cite this paper

Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220-4 [PubMed]

Adorjan P, Piepenbrock C, Obermayer K (1999) Contrast adaptation and infomax in visual cortical neurons. Rev Neurosci 10:181-200 [PubMed]

Aghajanian GK, Rasmussen K (1989) Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331-8 [PubMed]

Ahmed B, Allison JD, Douglas RJ, Martin KA (1997) An intracellular study of the contrast-dependence of neuronal activity in cat visual cortex. Cereb Cortex 7:559-70 [PubMed]

Atick JJ (1992) Could information theory provide an ecological theory of sensory processing? Network Comput Neural Sys 3:213-251

ATTNEAVE F (1954) Some informational aspects of visual perception. Psychol Rev 61:183-93 [PubMed]

Baccus SA, Meister M (2002) Fast and slow contrast adaptation in retinal circuitry. Neuron 36:909-19 [PubMed]

Baddeley R, Abbott LF, Booth MC, Sengpiel F, Freeman T, Wakeman EA, Rolls ET (1997) Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proc R Soc Lond B Biol Sci 264:1775-83 [PubMed]

Barlow HB (1961) Possible principles underlying the transformations of sensory messages Sensory Communication, Rosenblith WA, ed. pp.217

Barlow HB (1990) A theory about the functional role and synaptic mechanism of visual after-effects Vision: Coding and Efficiency, Blakemore C, ed.

Barlow HB (2001) Redundancy reduction revisited Network 12:241-253

Barlow HB, Foldiak P (1989) Adaptation and decorrelation in the cortex The computing neuron, Miall C:Durvin RM:Mitchison GJ, ed. pp.54

Bell AJ, Sejnowski TJ (1997) The independent components of natural scenes are edge filters. Vision Res 37:3327-38 [PubMed]

Bischoff U, Vogel W, Safronov BV (1998) Na+-activated K+ channels in small dorsal root ganglion neurones of rat. J Physiol 510 ( Pt 3):743-54 [PubMed]

Blakemore C, Campbell FW (1969) On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol 203:237-60 [PubMed]

Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26:695-702 [PubMed]

Brown SP, Masland RH (2001) Spatial scale and cellular substrate of contrast adaptation by retinal ganglion cells. Nat Neurosci 4:44-51 [PubMed]

Carandini M, Ferster D (1997) A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. Science 276:949-52 [PubMed]

Carandini M, Movshon JA, Ferster D (2007) Pattern adaptation and cross-orientation interactions in the primary visual cortex. Neuropharmacology 37:501-11 [PubMed]

Chance FS, Nelson SB, Abbott LF (1998) Synaptic depression and the temporal response characteristics of V1 cells. J Neurosci 18:4785-99 [PubMed]

Chander D, Chichilnisky EJ (2001) Adaptation to temporal contrast in primate and salamander retina. J Neurosci 21:9904-16 [PubMed]

Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34:437-46 [PubMed]

Dan Y, Atick JJ, Reid RC (1996) Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J Neurosci 16:3351-62 [PubMed]

Dong DW, Atick JJ (1995) Temporal decorrelation: a theory of lagged andnonlagged responses in the lateral geniculate nucleus Network Comput Neural Sys 6:159-178

Dong DW, Atick JJ (1995) Statistics of Natural Time-Varying Images Netw Comput Neural Syst 6:345-358

Dragoi V, Sharma J, Sur M (2000) Adaptation-induced plasticity of orientation tuning in adult visual cortex. Neuron 28:287-98 [PubMed]

Dryer SE (1994) Na(+)-activated K+ channels: a new family of large-conductance ion channels. Trends Neurosci 17:155-60 [PubMed]

Egan TM, Dagan D, Kupper J, Levitan IB (1992) Na(+)-activated K+ channels are widely distributed in rat CNS and in Xenopus oocytes. Brain Res 584:319-21 [PubMed]

Egan TM, Dagan D, Kupper J, Levitan IB (1992) Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci 12:1964-76 [PubMed]

Ermentrout B (1998) Linearization of F-I curves by adaptation. Neural Comput 10:1721-9 [PubMed]

Fain GL (1999) Molecular and Cellular Physiology of Neurons

Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412:787-92 [PubMed]

Field DJ (1994) What is the goal of sensory coding? Neural Comput 6:559-601

Finlayson PG, Cynader MS (1995) Synaptic depression in visual cortex tissue slices: an in vitro model for cortical neuron adaptation. Exp Brain Res 106:145-55 [PubMed]

Gabbiani F, Koch C (1998) Principles of spike train analysis Methods In Neuronal Modeling: From Ions To Networks, Segev I, ed. pp.313

Galvan M, Dörge A, Beck F, Rick R (1984) Intracellular electrolyte concentrations in rat sympathetic neurones measured with an electron microprobe. Pflugers Arch 400:274-9 [PubMed]

Goldman MS, Maldonado P, Abbott LF (2002) Redundancy reduction and sustained firing with stochastic depressing synapses. J Neurosci 22:584-91 [PubMed]

Goldman MS, Nelson SB, Abbott LF (1999) Decorrelation of spike trains by synaptic depression Neurocomputing 147-153:26-27

Grafe P, Rimpel J, Reddy MM, ten Bruggencate G (1982) Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation. Neuroscience 7:3213-20

Greenlee MW, Georgeson MA, Magnussen S, Harris JP (1991) The time course of adaptation to spatial contrast. Vision Res 31:223-36 [PubMed]

Greenlee MW, Heitger F (1988) The functional role of contrast adaptation. Vision Res 28:791-7 [PubMed]

Helmchen F, Imoto K, Sakmann B (1996) Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys J 70:1069-81 [PubMed]

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-44 [Journal] [PubMed]

   Squid axon (Hodgkin, Huxley 1952) (LabAXON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (NEURON) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SNNAP) [Model]
   Squid axon (Hodgkin, Huxley 1952) used in (Chen et al 2010) (R language) [Model]
   Squid axon (Hodgkin, Huxley 1952) (SBML, XPP, other) [Model]

Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357:244-6 [PubMed]

Kameyama M, Kakei M, Sato R, Shibasaki T, Matsuda H, Irisawa H (2004) Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature 309:354-6 [PubMed]

Kepecs A, Wang XJ, Lisman J (2002) Bursting neurons signal input slope. J Neurosci 22:9053-62 [PubMed]

Kim KJ, Rieke F (2001) Temporal contrast adaptation in the input and output signals of salamander retinal ganglion cells. J Neurosci 21:287-99 [PubMed]

Kim KJ, Rieke F (2003) Slow Na+ inactivation and variance adaptation in salamander retinal ganglion cells. J Neurosci 23:1506-16 [PubMed]

Koh DS, Jonas P, Vogel W (1994) Na(+)-activated K+ channels localized in the nodal region of myelinated axons of Xenopus. J Physiol 479 ( Pt 2):183-97 [PubMed]

Laughlin S (1981) A simple coding procedure enhances a neuron's information capacity. Z Naturforsch C 36:910-2 [PubMed]

Li YX, Bertram R, Rinzel J (1996) Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience 71:397-410 [PubMed]

Liu YH, Wang XJ (2004) Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. J Comput Neurosci 10:25-45 [Journal] [PubMed]

Maffei L, Fiorentini A, Bisti S (1973) Neural correlate of perceptual adaptation to gratings. Science 182:1036-8 [PubMed]

Matveev V, Wang XJ (2000) Differential short-term synaptic plasticity and transmission of complex spike trains: to depress or to facilitate? Cereb Cortex 10:1143-53 [PubMed]

Movshon JA, Lennie P (1979) Pattern-selective adaptation in visual cortical neurones. Nature 278:850-2 [PubMed]

Nelson SB (1991) Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. J Neurosci 11:344-56 [PubMed]

Ohzawa I, Sclar G, Freeman RD (1985) Contrast gain control in the cat's visual system. J Neurophysiol 54:651-67 [PubMed]

Olshausen BA, Field DJ (1996) Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607-9 [PubMed]

Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J Comput Neurosci 1:39-60 [Journal] [PubMed]

   CA3 pyramidal cell: rhythmogenesis in a reduced Traub model (Pinsky, Rinzel 1994) [Model]

Qian N, Sejnowski TJ (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 62:1-15

Rao RPN, Olshausen BA, Lewicki MS (2002) Probabilistic models of the brain: Perception and neural function

Rieke F (2001) Temporal contrast adaptation in salamander bipolar cells. J Neurosci 21:9445-54 [PubMed]

Rose CR, Kovalchuk Y, Eilers J, Konnerth A (1999) Two-photon Na+ imaging in spines and fine dendrites of central neurons. Pflugers Arch 439:201-7 [PubMed]

Rose CR, Ransom BR (1997) Regulation of intracellular sodium in cultured rat hippocampal neurones. J Physiol 499 ( Pt 3):573-87 [PubMed]

Ruderman DL (1994) The statistics of natural images Network 5:517-548

Ruderman DL, Bialek W (1994) Statistics of natural images: Scaling in the woods. PHYSICAL REVIEW LETTERS 73:814-817 [PubMed]

Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20:4286-99 [PubMed]

Sanchez-Vives MV, Nowak LG, McCormick DA (2000) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20:4267-85 [PubMed]

Schwindt PC, Spain WJ, Crill WE (1989) Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. J Neurophysiol 61:233-44 [Journal] [PubMed]

Schwindt PC, Spain WJ, Foehring RC, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J Neurophysiol 59:450-67 [Journal] [PubMed]

Sclar G, Ohzawa I, Freeman RD (1985) Contrast gain control in the kitten's visual system. J Neurophysiol 54:668-75 [PubMed]

Shapley R (1997) Retinal physiology: adapting to the changing scene. Curr Biol 7:R421-3 [PubMed]

Shapley RM, Victor JD (1978) The effect of contrast on the transfer properties of cat retinal ganglion cells. J Physiol 285:275-98 [PubMed]

Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122-6 [PubMed]

Simoncelli EP, Olshausen BA (2001) Natural image statistics and neural representation. Annu Rev Neurosci 24:1193-216 [PubMed]

Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555-86 [PubMed]

Smirnakis SM, Berry MJ, Warland DK, Bialek W, Meister M (1997) Adaptation of retinal processing to image contrast and spatial scale. Nature 386:69-73 [PubMed]

Somers DC, Todorov EV, Siapas AG, Toth LJ, Kim DS, Sur M (2000) A local circuit approach to understanding integration of long-range inputs in primary visual cortex. Cereb Cortex 8:204-17 [PubMed]

Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc Lond B Biol Sci 216:427-59 [PubMed]

Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc Natl Acad Sci U S A 94:719-23 [PubMed]

van Hateren JH (1997) Processing of natural time series of intensities by the visual system of the blowfly. Vision Res 37:3407-16 [PubMed]

Van_hateren JH, Van_der_schaaf A (1996) Temporal properties of natural scenes Ist-spie Proceedings 2657:139-143

Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17:7926-40 [Journal] [PubMed]

   Short term plasticity of synapses onto V1 layer 2/3 pyramidal neuron (Varela et al 1997) [Model]

Vidyasagar TR (1990) Pattern adaptation in cat visual cortex is a co-operative phenomenon. Neuroscience 36:175-9

Vinje WE, Gallant JL (2000) Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273-6 [PubMed]

Wainwright MJ (1999) Visual adaptation as optimal information transmission. Vision Res 39:3960-74 [PubMed]

Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol 79:1549-66 [Journal] [PubMed]

Gabbiani F, Krapp HG (2006) Spike-frequency adaptation and intrinsic properties of an identified, looming-sensitive neuron. J Neurophysiol 96:2951-62 [Journal] [PubMed]

   Leaky integrate-and-fire model of spike frequency adaptation in the LGMD (Gabbiani and Krapp 2006) [Model]

Goldman MS (2004) Enhancement of information transmission efficiency by synaptic failures. Neural Comput 16:1137-62 [PubMed]

Huss ME, Lansner A, Wallen P, El Manira A, Grillner S, Hellgren Kotaleski J (2007) Roles of ionic currents in lamprey CPG neurons: a modeling study. J Neurophysiol 97:2696-2711 [PubMed]

   Lamprey spinal CPG neuron (Huss et al. 2007) [Model]

Huys QJ, Zemel RS, Natarajan R, Dayan P (2007) Fast population coding. Neural Comput 19:404-41 [PubMed]

   Fast population coding (Huys et al. 2007) [Model]

Krishnan GP, Filatov G, Shilnikov A, Bazhenov M (2015) Electrogenic properties of the Na+/K+ ATPase controls transitions between normal and pathological brain states J Neurophysiol (113(9):3356-3374 [Journal] [PubMed]

   Single cell model with variable ion concentrations and Na+/K+ ATPase (Krishnan et al. 2015) [Model]

Mensi S, Naud R, Pozzorini C, Avermann M, Petersen CC, Gerstner W (2012) Parameter Extraction and Classification of Three Cortical Neuron Types Reveals Two Distinct Adaptation Mechanisms J Neurophysiol 107(6):1756-1775 [Journal] [PubMed]

   Extraction and classification of three cortical neuron types (Mensi et al. 2012) [Model]

Moldakarimov S, Rollenhagen JE, Olson CR, Chow CC (2005) Competitive dynamics in cortical responses to visual stimuli. J Neurophysiol 94:3388-96 [Journal] [PubMed]

Peron SP, Gabbiani F (2009) Spike frequency adaptation mediates looming stimulus selectivity in a collision-detecting neuron Nature Neuroscience 12:318-326 [Journal] [PubMed]

   Spike frequency adaptation in the LGMD (Peron and Gabbiani 2009) [Model]

Puccini GD, Sanchez-Vives MV, Compte A (2007) Selective detection of abrupt input changes by integration of spike-frequency adaptation and synaptic depression in a computational network model. J Physiol Paris 100:1-15 [PubMed]

Weigenand A, Schellenberger Costa M, Ngo HV, Claussen JC, Martinetz T (2014) Characterization of K-complexes and slow wave activity in a neural mass model. PLoS Comput Biol 10:e1003923 [Journal] [PubMed]

   Neural mass model of the sleeping thalamocortical system (Schellenberger Costa et al 2016) [Model]
   Neural mass model of the sleeping cortex (Weigenand et al 2014) [Model]
   Neural mass model of the neocortex under sleep regulation (Costa et al 2016) [Model]
   Neural mass model of spindle generation in the isolated thalamus (Schellenberger Costa et al. 2016) [Model]

(97 refs)