Temporal decorrelation by intrinsic cellular dynamics (Wang et al 2003)

 Download zip file 
Help downloading and running models
Accession:84593
"... Recent investigations in primary visual (V1) cortical neurons have demonstrated that adaptation to prolonged changes in stimulus contrast is mediated in part through intrinsic ionic currents, a Ca2+ activated K+ current (IKCa) and especially a Na+ activated K+ current (IKNa). The present study was designed to test the hypothesis that the activation of adaptation ionic currents may provide a cellular mechanism for temporal decorrelation in V1. A conductance-based neuron model was simulated, which included an IKCa and an IKNa. We show that the model neuron reproduces the adaptive behavior of V1 neurons in response to high contrast inputs. ...". See paper for details and more.
Reference:
1 . Wang XJ, Liu Y, Sanchez-Vives MV, McCormick DA (2003) Adaptation and temporal decorrelation by single neurons in the primary visual cortex. J Neurophysiol 89:3279-93 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex V1 pyramidal intratelencephalic L2-5 cell;
Channel(s): I Na,t; I L high threshold; I K; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Ion Channel Kinetics; Temporal Pattern Generation; Oscillations; Calcium dynamics;
Implementer(s): Wang, Xiao-Jing [xjwang at yale.edu];
Search NeuronDB for information about:  Neocortex V1 pyramidal intratelencephalic L2-5 cell; I Na,t; I L high threshold; I K; I Calcium; I Potassium;
  
/
decorr-model
images
readme.html
driver.c
header.h
myutils.c
nrutil.c
nrutil.h
rk4.c
                            
Loading data, please wait...