Models of Na channels from a paper on the PKC control of I Na,P (Baker 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:85112
"The tetrodotoxin-resistant (TTX-r) persistent Na(+) current, attributed to Na(V)1.9, was recorded in small (< 25 mum apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and Na(V)1.8 null mice. ... Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. ..." Note: models of NaV1.8 and NaV1.9 and also persistent and transient Na channels that collectively model Nav 1.1, 1.6, and 1.7 are present in this model.
Reference:
1 . Baker MD (2005) Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones. J Physiol 567:851-67 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Dorsal Root Ganglion (DRG) cell;
Channel(s): I Na,p; I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.1 SCN1A; Nav1.6 SCN8A; Nav1.7 SCN9A; Nav1.8 SCN10A; Nav1.9 SCN11A SCN12A;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Action Potentials; Signaling pathways; Nociception;
Implementer(s): Morse, Tom [Tom.Morse at Yale.edu];
Search NeuronDB for information about:  I Na,p; I Na,t; I K;
Files displayed below are from the implementation
// inf_states.hoc
// graphs the states infinity values

objref v_vec
v_vec=new Vector((40-(-120))/.25)

v_vec.indgen(-120,40,0.25)
s = v_vec.size()

objref m_hh_vec, m_nap_vec, m_nattxs_vec, m_nav1p8_vec
objref m_nav1p9_vec, n_kf_vec, n_ks_vec
objref h_nap_vec, h_nattxs_vec, h_nav1p8_vec
objref h_nav1p9_vec

// m_hh_vec=new Vector(s)
m_nap_vec=new Vector(s)
m_nattxs_vec=new Vector(s)
m_nav1p8_vec=new Vector(s)
m_nav1p9_vec=new Vector(s)
n_kf_vec=new Vector(s)
n_ks_vec=new Vector(s)
h_nap_vec=new Vector(s)
h_nattxs_vec=new Vector(s)
h_nav1p8_vec=new Vector(s)
h_nav1p9_vec=new Vector(s)

for i=0,v_vec.size()-1 {
	v_init=v_vec.x[i]
	init()
//	m_hh_vec.x[i]=soma.m_hh( 0.5 )
	m_nap_vec.x[i]=soma.m_nap( 0.5 )
	m_nattxs_vec.x[i]=soma.m_nattxs( 0.5 )
	m_nav1p8_vec.x[i]=soma.m_nav1p8( 0.5 )
	m_nav1p9_vec.x[i]=soma.m_nav1p9( 0.5 )
	h_nap_vec.x[i]=soma.h_nap( 0.5 )
	h_nattxs_vec.x[i]=soma.h_nattxs( 0.5 )
	h_nav1p8_vec.x[i]=soma.h_nav1p8( 0.5 )
	h_nav1p9_vec.x[i]=soma.h_nav1p9( 0.5 )

	n_kf_vec.x[i]=soma.n_kf( 0.5 )
	n_ks_vec.x[i]=soma.n_ks( 0.5 )
}


objref g
g=new Graph()

// m_hh_vec.label("")
m_nap_vec.label("m_nap")
m_nattxs_vec.label("m_nattxs")
m_nav1p8_vec.label("m_nav1p8")
m_nav1p9_vec.label("m_nav1p9")
n_kf_vec.label("n_kf")
n_ks_vec.label("n_ks")
h_nap_vec.label("h_nap")
h_nattxs_vec.label("h_nattxs")
h_nav1p8_vec.label("h_nav1p8")
h_nav1p9_vec.label("h_nav1p9")

m_nap_vec.line(g,v_vec)
m_nattxs_vec.line(g,v_vec)
m_nav1p8_vec.line(g,v_vec)
m_nav1p9_vec.line(g,v_vec)
n_kf_vec.line(g,v_vec)
n_ks_vec.line(g,v_vec)
h_nap_vec.line(g,v_vec)
h_nattxs_vec.line(g,v_vec)
h_nav1p8_vec.line(g,v_vec)
h_nav1p9_vec.line(g,v_vec)
g.exec_menu("View = plot")

Loading data, please wait...