CA1 pyramidal neurons: binding properties and the magical number 7 (Migliore et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:87535
NEURON files from the paper: Single neuron binding properties and the magical number 7, by M. Migliore, G. Novara, D. Tegolo, Hippocampus, in press (2008). In an extensive series of simulations with realistic morphologies and active properties, we demonstrate how n radial (oblique) dendrites of these neurons may be used to bind n inputs to generate an output signal. The results suggest a possible neural code as the most effective n-ple of dendrites that can be used for short-term memory recollection of persons, objects, or places. Our analysis predicts a straightforward physiological explanation for the observed puzzling limit of about 7 short-term memory items that can be stored by humans.
Reference:
1 . Migliore M, Novara G, Tegolo D (2008) Single neuron binding properties and the magical number 7. Hippocampus 18(11):1122-30 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I A; I K; I h; I Sodium;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Dendritic Action Potentials; Coincidence Detection; Spatio-temporal Activity Patterns; Active Dendrites; Detailed Neuronal Models; Action Potentials; Synaptic Integration; Working memory; Learning; Action Selection/Decision Making;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; I A; I K; I h; I Sodium;
/
magical7
readme.txt
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstims.mod *
2ap-distr-c62564AP.hoc
face.exe *
fixnseg.hoc *
geoc62564.hoc *
mosinit.hoc
Project1.exe *
sinapsi_weights.txt
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	q10=1
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax}
}















Loading data, please wait...