The role of ATP-sensitive potassium channels in a hippocampal neuron (Huang et al. 2007)

 Download zip file 
Help downloading and running models
Accession:87762
"Hyperglycemia-related neuronal excitability and epileptic seizures are not uncommon in clinical practice. However, their underlying mechanism remains elusive. ATP-sensitive K(+) (K(ATP)) channels are found in many excitable cells, including cardiac myocytes, pancreatic beta cells, and neurons. These channels provide a link between the electrical activity of cell membranes and cellular metabolism. We investigated the effects of higher extracellular glucose on hippocampal K(ATP) channel activities and neuronal excitability. The cell-attached patch-clamp configuration on cultured hippocampal cells and a novel multielectrode recording system on hippocampal slices were employed. In addition, a simulation modeling hippocampal CA3 pyramidal neurons (Pinsky-Rinzel model) was analyzed to investigate the role of K(ATP) channels in the firing of simulated action potentials. ..."
Reference:
1 . Huang CW, Huang CC, Cheng JT, Tsai JJ, Wu SN (2007) Glucose and hippocampal neuronal excitability: Role of ATP-sensitive potassium channels. J Neurosci Res : [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I K; I Potassium; ATP-senstive potassium current;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: XPP;
Model Concept(s): Activity Patterns; Bursting; Oscillations; Action Potentials; Epilepsy;
Implementer(s): Wu, Sheng-Nan [snwu at mail.ncku.edu.tw]; Huang, Chin-Wei;
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; I K; I Potassium; ATP-senstive potassium current;
  
/
Neuron_KATP
readme.html
JNS_Katp.pdf
Neuron_Figure.JPG
NeuronKATP_Stoch.ode
                            
Loading data, please wait...