Cell splitting in neural networks extends strong scaling (Hines et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97917
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.
Reference:
1 . Hines M, Eichner H, Schuermann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors J Comput Neurosci 25(1):203-210 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Generic;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
splitcell
pardentategyrus
readme.html *
bgka.mod *
CaBK.mod *
ccanl.mod *
Gfluct2.mod *
gskch.mod *
hyperde3.mod *
ichan2.mod *
LcaMig.mod *
nca.mod *
tca.mod *
bg.sh
DG500_M7.hoc *
dgnetactivity.jpg *
dgnettraces.jpg *
init.hoc
initorig.hoc *
modstat *
mosinit_orig.hoc *
out.std
parRI10sp.hoc
RI10sp.hoc
test1.sh *
time *
                            
COMMENT
	calcium accumulation into a volume of area*depth next to the
	membrane with a decay (time constant tau) to resting level
	given by the global calcium variable cai0_ca_ion
ENDCOMMENT

NEURON {
	SUFFIX ccanl
USEION nca READ ncai, inca, enca WRITE enca, ncai VALENCE 2
USEION lca READ lcai, ilca, elca WRITE elca, lcai VALENCE 2
USEION tca READ tcai, itca, etca WRITE etca, tcai VALENCE 2
RANGE caiinf, catau, cai, ncai, lcai,tcai, eca, elca, enca, etca
}

UNITS {
        (mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (milli/liter)
	(mA) = (milliamp)
	FARADAY = 96520 (coul)
	R = 8.3134	(joule/degC)
}

INDEPENDENT {t FROM 0 TO 100 WITH 100 (ms)}

PARAMETER {
        celsius = 6.3 (degC)
	depth = 200 (nm)	: assume volume = area*depth
	catau = 9 (ms)
	caiinf = 50.e-6 (mM)	: takes precedence over cai0_ca_ion
			: Do not forget to initialize in hoc if different
			: from this default.
	cao = 2 (mM)
	ica (mA/cm2)
	inca (mA/cm2)
	ilca (mA/cm2)
	itca (mA/cm2)
	cai= 50.e-6 (mM)
}

ASSIGNED {
	enca (mV)
	elca (mV)
	etca (mV)
	eca (mV)
}

STATE {
	ncai (mM)
	lcai (mM)
	tcai (mM)
}

INITIAL {
	VERBATIM
	ncai = _ion_ncai;
	lcai = _ion_lcai;
	tcai = _ion_tcai; 
	ENDVERBATIM
	ncai=caiinf/3
	lcai=caiinf/3
	tcai=caiinf/3
	cai = caiinf	
	eca = ktf() * log(cao/caiinf)	
	enca = eca
	elca = eca
	etca = eca
}


BREAKPOINT {
	SOLVE integrate METHOD derivimplicit
	cai = ncai+lcai+tcai	
	eca = ktf() * log(cao/cai)	
	enca = eca
	elca = eca
	etca = eca
}

DERIVATIVE integrate {
ncai' = -(inca)/depth/FARADAY * (1e7) + (caiinf/3 - ncai)/catau
lcai' = -(ilca)/depth/FARADAY * (1e7) + (caiinf/3 - lcai)/catau
tcai' = -(itca)/depth/FARADAY * (1e7) + (caiinf/3 - tcai)/catau
}

FUNCTION ktf() (mV) {
	ktf = (1000)*R*(celsius +273.15)/(2*FARADAY)
} 

Loading data, please wait...