Thalamic quiescence of spike and wave seizures (Lytton et al 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:9889
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
Reference:
1 . Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell;
Channel(s): I T low threshold;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Temporal Pattern Generation; Oscillations; Calcium dynamics;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; GabaA; Glutamate; I T low threshold; Gaba; Glutamate;
/
lytton97
README
AMPA.mod
calciumpump_destexhe.mod *
GABAB1.mod
GABALOW.mod
gen.mod
HH_traub.mod *
IAHP_destexhe.mod
ICAN_destexhe.mod
Ih_old.mod *
IT_wang.mod
IT2_huguenard.mod
nmda.mod
passiv.mod
presyn.mod *
pulse.mod *
rand.mod
boxes.hoc *
declist.hoc *
decvec.hoc *
default.hoc *
directory
fig7.gif
geom.hoc
grvec.hoc
init.hoc
jnphys77_1679.pdf
local.hoc *
mosinit.hoc
network.hoc
nrnoc.hoc *
params.hoc
presyn.inc *
queue.inc *
run.hoc
simctrl.hoc *
snshead.inc *
synq.inc *
xtmp
                            
: $Id: Ih_old.mod,v 1.6 1995/02/16 22:18:58 ethomas Exp $
TITLE anomalous rectifier channel
COMMENT
:
: Anomalous Rectifier Ih - cation (Na/K) channel
: Differential equations
:
: Model of double activation (Destexhe & Babloyantz, 1992)
: Activation functions were fitted from 
: McCormick & Pape,  J. Physiol. 431: 291, 1990.
: and Soltesz et al, J. Physiol. 441: 175, 1991.
:
: Kinetic model of calcium-induced shift in the activation of Ih channels
: Model of A. Destexhe, 1992, inspired from the dependence of If on calcium
: in heart cells (Harigawa & Hirishawa, J. Physiol. 409: 121, 1989)
:
:   ACTIVATE BINDING MODEL : 
:       - binding of Ca on S and F channels (VERSION 2: nexp binding sites)
:       - Ca binds on activated gates (rate constants k1 and k2)
:	    idem before:
:		s0 (closed) <-> s1 (open)	; rate cst alpha1,beta1
:		f0 (closed) <-> f1 (open)	; rate cst alpha1,beta1

:	    new:
:		s1 (open) + Ca <-> s2 (open)	; rate cst k1,k2
:		f1 (open) + Ca <-> f2 (open)	; rate cst k1,k2
:
:       - this suffies to account for shift of Ih activation with calcium
:	  (no need of other mechanism - or other time constants than k1,k2)
:
:   PARAMETERS:
:
:     VERSION 2: reformulation of parameters k1,k2 into k2 and cac.
:	cac = (k2/k1)^(1/nexp) = half activation calcium dependence.
:	- k2:  this rate constant is the inverse of the real time constant of 
:              the binding of Ca to Ih channel.  (0.001 to 0.0001 ms-1)
:	- cac: the half activation must be adapted to calcium dynamics of
:	       the cell.  Usually, cac = 1e-4 mM.
:	- nexp:number of sites of calcium on h-channels, nexp=2 here.
:
:  MODIF: addition of control variables (June 11 93)
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iar
	USEION other WRITE iother VALENCE 1
	USEION ca READ cai
        RANGE ghbar, gh, i
	GLOBAL k2, cac, nexp, h_inf, tau_s, tau_f, controls, controlf
}

UNITS {
	(molar)	= (1/liter)
	(mM)	= (millimolar)
	(mA) 	= (milliamp)
	(mV) 	= (millivolt)
	(msM)	= (ms mM)
}


PARAMETER {
	eh	= -43	(mV)
	celsius = 36	(degC)
	ghbar	= .0001	(mho/cm2)
	cac	= 1e-4	(mM)		: half-activation of calcium dependence
	k2	= 0.001	(1/ms)		: inverse of time constant
	nexp	= 2			: number of binding sites
	controls = 1			: control of variable s (0=no s1, s2)
	controlf = 1			: control of variable f (0=no f1, f2)
}


STATE {
	s1
	s2
	f1
	f2
}


ASSIGNED {
	v	(mV)
	cai	(mM)
	i	(mA/cm2)
	iother	(mA/cm2)
        gh	(mho/cm2)
	h_inf
	tau_s	(ms)
	tau_f	(ms)
	alpha1	(1/ms)
	alpha2	(1/ms)
	beta1	(1/ms)
	beta2	(1/ms)
	kk	(1/ms)
	fderiv	(1/ms)
	tadj
}


BREAKPOINT {
	SOLVE states METHOD runge

	if(controls == 0) {
		gh = ghbar * (f1+f2)
	} else if(controlf == 0) {
		gh = ghbar * (s1+s2)
	} else {
		gh = ghbar * (s1+s2) * (f1+f2)
	}
	
	i = gh * (v - eh)
	iother = i
}

DERIVATIVE states { LOCAL s0,f0
	evaluate_fct(v)

	s0 = 1 - s1 - s2
	f0 = 1 - f1 - f2

	kk = k2 * (5e-5/cac)^nexp

	fderiv = kk*s1 - k2*s2

	s1' = alpha1*s0 - beta1*s1 - fderiv
	s2' = fderiv

	fderiv = kk*f1 - k2*f2

	f1' = alpha2*f0 - beta2*f1 - fderiv
	f2' = fderiv
}

UNITSOFF
INITIAL {
:
:  Experiments of Coulter et al were at 36 deg.C
:  Q10 is assumed equal to 3
:
        tadj = 3.0 ^ ((celsius-36)/10)
	evaluate_fct(v)
	kk = k2 * (cai/cac)^nexp
	s1 = alpha1*k2/(alpha1*kk + alpha1*k2 + beta1*k2)
	s2 = alpha1*kk/(alpha1*kk + alpha1*k2 + beta1*k2)
	f1 = alpha2*k2/(alpha2*kk + alpha2*k2 + beta2*k2)
	f2 = alpha2*kk/(alpha2*kk + alpha2*k2 + beta2*k2)
}


PROCEDURE evaluate_fct(v (mV)) {

	h_inf = 1 / ( 1 + exp((v+68.9)/6.5) )	: sigmoide "square root"
	tau_s = exp((v+183.6)/15.24) / tadj	: version J neuro
	tau_f = exp((v+158.6)/11.2) / ( 1 + exp((v+75)/5.5) ) / tadj

	alpha1 = controls * h_inf / tau_s
	beta1  = ( 1 - h_inf ) / tau_s
	alpha2 = controlf * h_inf / tau_f
	beta2  = ( 1 - h_inf ) / tau_f
}
UNITSON


Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96[PubMed]

References and models cited by this paper

References and models that cite this paper

Avanzini G, de Curtis M, Panzica F, Spreafico R (1989) Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. J Physiol 416:111-22 [PubMed]

Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669-91 [PubMed]

Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol 490 ( Pt 1):159-79 [PubMed]

Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587-604 [PubMed]

Crunelli V, Lightowler S, Pollard CE (1989) A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol 413:543-61 [PubMed]

Davies CH, Davies SN, Collingridge GL (1990)

Deschaenes M, Madariaga-Domich A, Steriade M (1985) Dendrodendritic synapses in the cat reticularis thalami nucleus: a structural basis for thalamic spindle synchronization. Brain Res 334:165-8 [PubMed]

Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538-52 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049-70 [Journal] [PubMed]

   Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996) [Model]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) Modeling the control of reticular thalamic oscillations by neuromodulators. Neuroreport 5:2217-20 [PubMed]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803-18 [Journal] [PubMed]

   Thalamic Reticular Network (Destexhe et al 1994) [Model]

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169-85 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996) [Model]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, McCormick DA, Sejnowski TJ (1993) A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys J 65:2473-7 [Journal] [PubMed]

Destexhe A, Sejnowski TJ (1995) G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc Natl Acad Sci U S A 92:9515-9 [PubMed]

Dichter M, Spencer WA (1969)

Dutar P, Nicoll RA (1988)

Fisher RS, Prince DA (1977)

Gloor P (1979)

Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J Neurophysiol 72:1109-26 [Journal] [PubMed]

Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750-69 [Journal] [PubMed]

Hernandez-Cruz A, Pape HC (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 61:1270-83 [Journal] [PubMed]

Hirsch MW, Baird B (1995)

Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804-17 [PubMed]

Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71:2576-81 [Journal] [PubMed]

Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227-47 [PubMed]

Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205-26 [PubMed]

Kim U, Bal T, McCormick DA (1995)

LeMasson G, Marder E, Abbott LF (1993)

Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 441:155-74 [PubMed]

Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501-9 [PubMed]

Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:673-84 [PubMed]

Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059-79 [Journal] [PubMed]

McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291-318 [PubMed]

   Thalamic Relay Neuron: I-h (McCormick, Pape 1990) [Model]

Mody I, De Koninck Y, Otis TS, Soltesz I (1994)

Rush ME, Rinzel J (1994)

Shosaku A (1986)

Soltesz I, Crunelli V (1992) A role for low-frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. J Physiol 457:257-76 [PubMed]

Steriade M, Amzica F (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J Neurophysiol 72:2051-69 [Journal] [PubMed]

Steriade M, Contreras D (1995) Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci 15:623-42 [PubMed]

Steriade M, Deschaenes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473-97 [Journal] [PubMed]

Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68-81 [PubMed]

Steriade M, Domich L, Oakson G, Deschaenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260-73 [Journal] [PubMed]

Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679-85 [PubMed]

Suzuki S, Rogawski MA (1989)

Traub RD, Miles R, Wong RK (1987) Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J Neurophysiol 58:739-51 [Journal] [PubMed]

Traub RD, Miles R, Wong RK, Schulman LS, Schneiderman JH (1987) Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol 58:752-64 [Journal] [PubMed]

Ulrich D, Huguenard JR (1996)

von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361-4 [PubMed]

Wallenstein GV (1994)

Wang XJ, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc Natl Acad Sci U S A 92:5577-81 [PubMed]

Yen CT, Conley M, Hendry SH, Jones EG (1985) The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci 5:2254-68 [PubMed]

Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099-111 [PubMed]

Destexhe A, Contreras D, Steriade M (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38:555-563 [Journal]

   Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001) [Model]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [PubMed]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

Huertas MA, Groff JR, Smith GD (2005) Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission J Comp Neurosci 19:147-180 [Journal]

Kager H, Wadman WJ, Somjen GG (2007) Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22:105-128 [Journal] [PubMed]

Le Franc Y, Le Masson G (2010) Multiple firing patterns in deep Dorsal Horn Neurons of the spinal cord: computational analysis of mechanisms and functional implications. J Neurophysiol [Journal] [PubMed]

Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43 [Journal] [PubMed]

   Computer model of clonazepam`s effect in thalamic slice (Lytton 1997) [Model]

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schurmann F, Hines ML (2016) Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput :1-28 [Journal] [PubMed]

   Parallelizing large networks in NEURON (Lytton et al. 2016) [Model]

Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126:467-84 [Journal] [PubMed]

   Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004) [Model]

Thomas E, Lytton WW (1998) Computer model of antiepileptic effects mediated by alterations in GABA(A)-mediated inhibition. Neuroreport 9:691-6 [PubMed]

van Drongelen W, Lee HC, Stevens RL, Hereld M (2007) propagation of seizure-like activity in a model of neocortex. J Clin Neurophysiol 24:182-8 [PubMed]

Zhao X, Robinson PA (2015) Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci [Journal] [PubMed]

   Neural-field model of generalized seizures (Zhao et al., 2015) [Model]

(66 refs)