Thalamic quiescence of spike and wave seizures (Lytton et al 1997)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:9889
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
Reference:
1 . Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell;
Channel(s): I T low threshold;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Temporal Pattern Generation; Oscillations; Calcium dynamics;
Implementer(s): Lytton, William [billl at neurosim.downstate.edu]; Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; GabaA; Glutamate; I T low threshold; Gaba; Glutamate;
/
lytton97
README
AMPA.mod
calciumpump_destexhe.mod *
GABAB1.mod
GABALOW.mod
gen.mod
HH_traub.mod *
IAHP_destexhe.mod
ICAN_destexhe.mod
Ih_old.mod *
IT_wang.mod
IT2_huguenard.mod
nmda.mod
passiv.mod
presyn.mod *
pulse.mod *
rand.mod
boxes.hoc *
declist.hoc *
decvec.hoc *
default.hoc *
directory
fig7.gif
geom.hoc
grvec.hoc
init.hoc
jnphys77_1679.pdf
local.hoc *
mosinit.hoc
network.hoc
nrnoc.hoc *
params.hoc
presyn.inc *
queue.inc *
run.hoc
simctrl.hoc *
snshead.inc *
synq.inc *
xtmp
                            
// $Id: params.hoc,v 1.108 2002/07/04 17:08:46 billl Exp $

/*--------------------------------------------*/
/*         GENERAL PARAMETERS                 */
/*--------------------------------------------*/


celsius = 36            /* temperature */
dt = 0.05
tstop = 6000

vrest   = 1000          /* initial voltage */
vrestRE = -70
vrestTC = -69

v_potassium = -95       /* potassium reversal potential */
v_sodium = 50           /* sodium reversal potential */
v_calcium = 120         /* calcium reversal potential */
v_glutamate = 0         /* excitatory synaptic reversal potential */
v_gaba = -80            /* inhibitory synaptic reversal potential */
camin   = 1e-8          /* minimal intracellular concentration */
shift = 2               /* shift for screening charge */
Rax = 100

batch = 0               /* batch mode: 1=batch, 0=interactive */
print_flag = 0

forall { Ra = Rax }

/*--------------------------------------------*/
/*  INTRINSIC CURRENTS AND CALCIUM DIFFUSION  */
/*--------------------------------------------*/

forsec "TC" {

  insert Pass           /* leak current */
  erev_Pass = 100         /* to be set */
  g_Pass = 5e-5

  insert hh2            /* Hodgin-Huxley INa and IK */
  ek = v_potassium
  ena = v_sodium
  vtraub_hh2 = -55
  gnabar_hh2 = 0.03
  gkbar_hh2 = 0.002

  insert it             /* TC IT current */
  cai = 2.4e-4 
  cao = 2 
  eca = 120
  shift_it = 2
  gcabar_it = 0.001

  insert iar            /* Ih current */
  eh=-43 
  nexp_iar = 2
  cac_iar = 5e-4
  k2_iar = 4e-4
  ghbar_iar = 1.2e-4

  insert cad            /* calcium pump */
  kd_cad = 1e-4
  kt_cad = 1e-4
  depth_cad = 1
  taur_cad = 1e10
}

forsec "RE" {
  insert Pass           /* leak current */
  erev_Pass = 100         /* to be set */
  g_Pass = 5e-5

  insert hh2            /* Hodgin-Huxley INa and IK */
  ek = v_potassium
  ena = v_sodium
  vtraub_hh2 = -55
  gnabar_hh2 = 0.1
  gkbar_hh2 = 0.01

  insert it2            /* reticular IT current */
  cai = 2.4e-4 
  cao = 2 
  eca = 120 
  shift_it2 = 2
  gcabar_it2 = 0.00175

  insert iahp           /* slow IAHP */
  cac_iahp = 0.025
  beta_iahp = 0.03
  taumin_iahp = 0.1
  ek=v_potassium
  gkbar_iahp = 0.005

  insert ican           /* slow ICAN */
  cac_ican = 0.01
  beta_ican = 0.002
  taumin_ican = 0.1
  en=-20
  gbar_ican = 0.00035

  insert cad            /* calcium pump */
  kd_cad = 1e-4
  kt_cad = 1e-4
  depth_cad = 1
  taur_cad = 1e10
}

/*--------------------------------------------*/
/*          SYNAPSE PARAMETERS                */
/*--------------------------------------------*/

Deadtime_AMPA = 1
Alpha_AMPA = 1.1                                /* VALUES FITTED FROM PSC */
Beta_AMPA = 0.19
Erev_AMPA = v_glutamate

Deadtime_GABALOW = 1
Alpha_GABALOW = 0.53                    /* VALUES FITTED FROM PSC */
Beta_GABALOW = 0.18
Erev_GABALOW = -90                      /* Huguenard */

for (i=0;i<cols;i=i+1) {
  for (j=0;j<tiers;j=j+1) {
    col[i].re.sglu[j].gmax = 0.002     /* glu synapses belong to re cells */
    col[i].tc[j].sgaba.gmax = 0.002    /* gaba synapses belong to tc cells */
    col[i].tc[j].sgabab.gmax = 0.004    /* gaba synapses belong to tc cells */
  }
}

/*--------------------------------------------*/
/*          STIMULUS PARAMETERS               */
/*--------------------------------------------*/

pg.fast_invl = 10       // fast interval (mean time between spikes)
pg.slow_invl = 3000     // slow interval (mean interburst; 0=tonic)
pg.burst_len = 5        // length of bursts (mean number of spikes per burst)
pg.noise = 0            // rel. level of noise (0=periodic; 1=totally noisy)
pg.start = 1e9
pg.end = 1e10

for (i=0;i<cols;i=i+1) {
  sreinamp[i].gmax = 0.0002
  sreinnm[i].gmax = 0.002
  for (j=0;j<tiers;j=j+1) {
    ij = i*cols+j  // count through cols and tiers
    stcin[ij].gmax = 0.002
  }
} 

Loading data, please wait...