Thalamic quiescence of spike and wave seizures (Lytton et al 1997)

 Download zip file   Auto-launch 
Help downloading and running models
A phase plane analysis of a two cell interaction between a thalamocortical neuron (TC) and a thalamic reticularis neuron (RE).
1 . Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Thalamus;
Cell Type(s): Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell;
Channel(s): I T low threshold;
Gap Junctions:
Receptor(s): GabaA; Glutamate;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Temporal Pattern Generation; Oscillations; Calcium dynamics;
Implementer(s): Lytton, William [billl at]; Destexhe, Alain [Destexhe at];
Search NeuronDB for information about:  Thalamus geniculate nucleus (lateral) principal neuron; Thalamus reticular nucleus cell; GabaA; Glutamate; I T low threshold; Gaba; Glutamate;
calciumpump_destexhe.mod *
HH_traub.mod *
Ih_old.mod *
presyn.mod *
pulse.mod *
boxes.hoc *
declist.hoc *
decvec.hoc *
default.hoc *
local.hoc *
nrnoc.hoc *
params.hoc * *
simctrl.hoc * * *
// $Id: run.hoc,v 1.105 2002/07/08 14:47:08 billl Exp $

proc initMisc1 () {
  forsec "TC" {
    v = vrestTC }
  forsec "RE" {
    v = vrestRE }

func setother () { local iSum
  if (ismembrane("cad")) {
    kd_cad = cai*(-(cai * depth_cad *FARADAY) + cainf_cad * depth_cad * FARADAY - \
                  5000*ica*taur_cad - depth_cad * FARADAY*kt_cad * taur_cad)
    kd_cad = kd_cad/(cai*depth_cad*FARADAY - cainf_cad * depth_cad * FARADAY + \
  if (ismembrane("iar")) iSum += iother 
  if (ismembrane("ican")) iSum += iother 
  return iSum

proc finishMisc () {

printStep = 0.2

proc clearsec () {forall { delete_section() }}

byte_store = 1
glpnum = 14
double glp[glpnum]
jj = 0
for ii=-5,-1 { kk=2*10^ii
  if (kk!=2e-3) { glp[jj]=kk jj=jj+1 }}
for ii=0,10 { kk=0.001 + (ii)*2e-4
  if (kk!=2e-3) { glp[jj]=kk jj=jj+1 }}
for ii=0,glpnum-1 { printf("%g ",glp[ii]) }

proc auto_run() { local ii,jj,kk
  printf("begin auto_run\n")
  for ii=0,glpnum-1 { = glp[ii]
    for jj=0,glpnum-1 { = glp[jj]
      sprint(temp_string_,"sgaba %g, sgabab %g",,
      printf("%s: %s\n",output_file,temp_string_)
      runnum = runnum + 1
  printf("end auto_run\n")

proc nprl() { 
  new_printlist_item("col[0].tc[0].soma.v(0.5)") // 0
  new_printlist_item("col[0].re.soma.v(0.5)")    // 1
  new_printlist_item("col[0].re.soma.cai(0.5)")  // 2
  new_printlist_item("col[0].re.soma.m_it2(0.5)")// 3
  new_printlist_item("col[0].re.soma.h_it2(0.5)")// 4

objref box[7],g[6]

proc fig7box () { 
  for ii=0,5 { box[ii]=nil g[ii]=nil }
  for ii=0,4 box[ii]=new VBox() 
  for ii=5,6 box[ii]=new HBox() 
  for ii=0,5 g[ii]=new Graph(0)
  box[0].intercept(1)                   // VBOX
  g[0].view(0,-90,tstop,130,0,0,500,50) // RE v graph
  g[1].view(0,-90,tstop,130,0,0,500,50) // TC v graph
  box[5].intercept(1)                   // HBOX
  g[2].view(0,-90,tstop,130,0,0,100,100)  // mT vs hT during IBIs (a)
  // box[2].map("",0,0,2,50)
  xpanel("") xpanel()
  box[1].intercept(1)                   // VBOX
  g[3].view(0,-90,tstop,130,0,0,100,50)  // mT vs hT during burst b
  g[4].view(0,-90,tstop,130,0,0,100,50)  // mT vs hT during burst c
  box[6].intercept(1)                   // HBOX
  xpanel("") xpanel()
  g[5].view(0,-90,tstop,130,0,0,100,100)  // log(cai) vs mV
  xpanel("") xpanel()
  box[0].map("JNPhys 77:1688 Fig. 7")   // title

//* fill graph segments with different colors
objref colr,ltype,burst_beg,burst_end
objref secbeg[6],secend[6], logca
{ltype=new Vector(0) colr=ltype.c burst_beg=ltype.c burst_end=ltype.c logca=ltype.c}
for ii=0,5 {secbeg[ii]=new Vector(0) secend[ii]=new Vector(0)}
revec(colr ,7,1,2,3,4,5,6,7,8,9,0,0)

proc mksecvecs () {
  tvec.indgen  tvec.mul(printStep)  

  secbeg[0].copy(burst_end) secbeg[0].insrt(0,0) // t vs RE
  secend[0].copy(burst_end) secend[0].append(tstop)    
  secbeg[1].copy(secbeg[0]) secend[1].copy(secend[0])  // t vs TC same
  secbeg[2].copy(burst_end) secbeg[2].insrt(0,0) // RE mT vs hT for interburst intervals
  secend[2].copy(burst_beg) secend[2].remove(0) secend[2].insrt(0,10) pushvec(secend[2],tstop)
  secbeg[2].add(0) secend[2].add(-10) // move away from the spikes
  revec(secbeg[3],10) revec(secend[3],-10)  // first burst
  for (ii=1;ii<9;ii+=2) { secbeg[3].append(burst_beg.x[ii],10) secend[3].append(burst_end.x[ii],-10) }
  secbeg[3].add(-10) secend[3].add(10) 
  secbeg[3].append(0,0) secend[3].append(0,0)
  revec(secbeg[4]) revec(secend[4])
  for (ii=0;ii<9;ii+=2) { secbeg[4].append(burst_beg.x[ii],10) secend[4].append(burst_end.x[ii],-10) }
  secbeg[4].add(-10) secend[4].add(10) 
  secbeg[4].append(0) secend[4].append(0)
  secbeg[5].copy(secbeg[2]) secend[5].copy(secend[2])
proc fillgrs () { local ii
  for ii=0,5 { g[ii].erase g[ii].exec_menu("NewView") }
  for scase("A1","A2","Ba","Bb","Bc","C") g[i1].label(0.5,0.8,temp_string_)
  // RE and TC voltage graphs
  // printlist.object(1).vec.plot(g[0],printStep)  // RE v
  splitgrit(0,tvec,printlist.object(1).vec) // RE v
  // printlist.object(0).vec.plot(g[1],printStep)  // TC v
  splitgrit(1,tvec,printlist.object(0).vec) // TC v

  // RE mT vs hT for interburst intervals
  // printlist.object(4).vec.plot(g[2],printlist.object(3).vec)  // RE mT vs hT

  // the two different bursts

  // printlist.object(1).vec.plot(g[5],logca)

// splitgrit (grnum,xvec,yvec)
proc splitgrit () { local ob,gr,p0,p1,sp
  gr=$1  sp=printStep
  p0=p1=allocvecs(2) p1+=1 // temporary vectors
  for vtr2(&x,&y,secbeg[gr],secend[gr]) { 
    mso[p0].resize(0) mso[p1].resize(0)

disp_delay=1  // set to higher number, eg 1e4 if wish to display more slowly
proc simsim () { local ii
  for ii=0,5 { g[ii].erase_all g[ii].exec_menu("NewView") }
  for scase("A1","A2","Ba","Bb","Bc","C") g[i1].label(0.5,0.8,temp_string_)

  for tsec=0,secbeg[0].size-1 {
    for (tt=secbeg[0].x[tsec];tt<secend[0].x[tsec]+ssstep;tt+=ssstep) {
      for ii=0,5 g[ii].flush doEvents()
      for ii=0,disp_delay sqrt(2) // delay loop if needed
      // RE and TC voltage graphs
      splgrt(0,tvec,printlist.object(1).vec) // RE v
      splgrt(1,tvec,printlist.object(0).vec) // TC v
      // RE mT vs hT for interburst intervals
      // the two different bursts
      if (secend[3].x[tsec]!=0) splgrt(3,printlist.object(3).vec,printlist.object(4).vec)
      if (secend[4].x[tsec]!=0) splgrt(4,printlist.object(3).vec,printlist.object(4).vec)

// splgrt (grnum,xvec,yvec,startvec,endvec,time)
proc splgrt () { local gr,sp,bt,et
  gr=$1 sp=printStep
  bt=secbeg[gr].x[tsec] et=secend[gr].x[tsec] // beginning and end
  if (tt>=bt && tt<et-1) {
    ind.resize(0) vec.resize(0)

Lytton WW, Contreras D, Destexhe A, Steriade M (1997) Dynamic interactions determine partial thalamic quiescence in a computer network model of spike-and-wave seizures. J Neurophysiol 77:1679-96[PubMed]

References and models cited by this paper

References and models that cite this paper

Avanzini G, de Curtis M, Panzica F, Spreafico R (1989) Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. J Physiol 416:111-22 [PubMed]

Bal T, McCormick DA (1993) Mechanisms of oscillatory activity in guinea-pig nucleus reticularis thalami in vitro: a mammalian pacemaker. J Physiol 468:669-91 [PubMed]

Contreras D, Steriade M (1996) Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. J Physiol 490 ( Pt 1):159-79 [PubMed]

Coulter DA, Huguenard JR, Prince DA (1989) Calcium currents in rat thalamocortical relay neurones: kinetic properties of the transient, low-threshold current. J Physiol 414:587-604 [PubMed]

Crunelli V, Lightowler S, Pollard CE (1989) A T-type Ca2+ current underlies low-threshold Ca2+ potentials in cells of the cat and rat lateral geniculate nucleus. J Physiol 413:543-61 [PubMed]

Davies CH, Davies SN, Collingridge GL (1990)

Deschaenes M, Madariaga-Domich A, Steriade M (1985) Dendrodendritic synapses in the cat reticularis thalami nucleus: a structural basis for thalamic spindle synchronization. Brain Res 334:165-8 [PubMed]

Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65:1538-52 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J Neurophysiol 76:2049-70 [Journal] [PubMed]

   Thalamocortical and Thalamic Reticular Network (Destexhe et al 1996) [Model]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) Modeling the control of reticular thalamic oscillations by neuromodulators. Neuroreport 5:2217-20 [PubMed]

Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J Neurophysiol 72:803-18 [Journal] [PubMed]

   Thalamic Reticular Network (Destexhe et al 1994) [Model]

Destexhe A, Contreras D, Steriade M, Sejnowski TJ, Huguenard JR (1996) In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons. J Neurosci 16:169-85 [Journal] [PubMed]

   [1 reconstructed morphology on NeuroMorpho.Org]
   Thalamic reticular neurons: the role of Ca currents (Destexhe et al 1996) [Model]

Destexhe A, Mainen ZF, Sejnowski TJ (1994) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci 1:195-230 [Journal] [PubMed]

   Application of a common kinetic formalism for synaptic models (Destexhe et al 1994) [Model]
   Kinetic synaptic models applicable to building networks (Destexhe et al 1998) [Model]

Destexhe A, McCormick DA, Sejnowski TJ (1993) A model for 8-10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys J 65:2473-7 [Journal] [PubMed]

Destexhe A, Sejnowski TJ (1995) G protein activation kinetics and spillover of gamma-aminobutyric acid may account for differences between inhibitory responses in the hippocampus and thalamus. Proc Natl Acad Sci U S A 92:9515-9 [PubMed]

Dichter M, Spencer WA (1969)

Dutar P, Nicoll RA (1988)

Fisher RS, Prince DA (1977)

Gloor P (1979)

Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J Neurophysiol 72:1109-26 [Journal] [PubMed]

Golomb D, Wang XJ, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. J Neurophysiol 75:750-69 [Journal] [PubMed]

Hernandez-Cruz A, Pape HC (1989) Identification of two calcium currents in acutely dissociated neurons from the rat lateral geniculate nucleus. J Neurophysiol 61:1270-83 [Journal] [PubMed]

Hirsch MW, Baird B (1995)

Huguenard JR, Prince DA (1992) A novel T-type current underlies prolonged Ca(2+)-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J Neurosci 12:3804-17 [PubMed]

Huguenard JR, Prince DA (1994) Clonazepam suppresses GABAB-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J Neurophysiol 71:2576-81 [Journal] [PubMed]

Jahnsen H, Llinas R (1984) Ionic basis for the electro-responsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J Physiol 349:227-47 [PubMed]

Jahnsen H, Llinas R (1984) Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J Physiol 349:205-26 [PubMed]

Kim U, Bal T, McCormick DA (1995)

LeMasson G, Marder E, Abbott LF (1993)

Leresche N, Lightowler S, Soltesz I, Jassik-Gerschenfeld D, Crunelli V (1991) Low-frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. J Physiol 441:155-74 [PubMed]

Lytton WW (1996) Optimizing synaptic conductance calculation for network simulations. Neural Comput 8:501-9 [PubMed]

Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: a computer model. Neuroscience 70:673-84 [PubMed]

Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66:1059-79 [Journal] [PubMed]

McCormick DA, Pape HC (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431:291-318 [PubMed]

   Thalamic Relay Neuron: I-h (McCormick, Pape 1990) [Model]

Mody I, De Koninck Y, Otis TS, Soltesz I (1994)

Rush ME, Rinzel J (1994)

Shosaku A (1986)

Soltesz I, Crunelli V (1992) A role for low-frequency, rhythmic synaptic potentials in the synchronization of cat thalamocortical cells. J Physiol 457:257-76 [PubMed]

Steriade M, Amzica F (1994) Dynamic coupling among neocortical neurons during evoked and spontaneous spike-wave seizure activity. J Neurophysiol 72:2051-69 [Journal] [PubMed]

Steriade M, Contreras D (1995) Relations between cortical and thalamic cellular events during transition from sleep patterns to paroxysmal activity. J Neurosci 15:623-42 [PubMed]

Steriade M, Deschaenes M, Domich L, Mulle C (1985) Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54:1473-97 [Journal] [PubMed]

Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. J Neurosci 6:68-81 [PubMed]

Steriade M, Domich L, Oakson G, Deschaenes M (1987) The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57:260-73 [Journal] [PubMed]

Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679-85 [PubMed]

Suzuki S, Rogawski MA (1989)

Traub RD, Miles R, Wong RK (1987) Models of synchronized hippocampal bursts in the presence of inhibition. I. Single population events. J Neurophysiol 58:739-51 [Journal] [PubMed]

Traub RD, Miles R, Wong RK, Schulman LS, Schneiderman JH (1987) Models of synchronized hippocampal bursts in the presence of inhibition. II. Ongoing spontaneous population events. J Neurophysiol 58:752-64 [Journal] [PubMed]

Ulrich D, Huguenard JR (1996)

von Krosigk M, Bal T, McCormick DA (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261:361-4 [PubMed]

Wallenstein GV (1994)

Wang XJ, Golomb D, Rinzel J (1995) Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proc Natl Acad Sci U S A 92:5577-81 [PubMed]

Yen CT, Conley M, Hendry SH, Jones EG (1985) The morphology of physiologically identified GABAergic neurons in the somatic sensory part of the thalamic reticular nucleus in the cat. J Neurosci 5:2254-68 [PubMed]

Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099-111 [PubMed]

Destexhe A, Contreras D, Steriade M (2001) LTS cells in cerebral cortex and their role in generating spike-and-wave oscillations. Neurocomputing 38:555-563 [Journal]

   Pyramidal Neuron: Deep, Thalamic Relay and Reticular, Interneuron (Destexhe et al 1998, 2001) [Model]

Destexhe A, Sejnowski TJ (2003) Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83:1401-53 [PubMed]

Hines ML, Carnevale NT (2003) Personal Communication of NEURON bibliography

Huertas MA, Groff JR, Smith GD (2005) Feedback Inhibition and Throughput Properties of an Integrate-and-Fire-or-Burst Network Model of Retinogeniculate Transmission J Comp Neurosci 19:147-180 [Journal]

Kager H, Wadman WJ, Somjen GG (2007) Seizure-like afterdischarges simulated in a model neuron. J Comput Neurosci 22:105-128 [Journal] [PubMed]

Le Franc Y, Le Masson G (2010) Multiple firing patterns in deep Dorsal Horn Neurons of the spinal cord: computational analysis of mechanisms and functional implications. J Neurophysiol [Journal] [PubMed]

Lytton WW (1997) Computer model of clonazepam's effect in thalamic slice. Neuroreport 8:3339-43 [Journal] [PubMed]

   Computer model of clonazepam`s effect in thalamic slice (Lytton 1997) [Model]

Lytton WW, Hellman KM, Sutula TP (1998) Computer models of hippocampal circuit changes of the kindling model of epilepsy. Artif Intell Med 13:81-97 [PubMed]

Lytton WW, Seidenstein AH, Dura-Bernal S, McDougal RA, Schurmann F, Hines ML (2016) Simulation Neurotechnologies for Advancing Brain Research: Parallelizing Large Networks in NEURON. Neural Comput :1-28 [Journal] [PubMed]

   Parallelizing large networks in NEURON (Lytton et al. 2016) [Model]

Suffczynski P, Kalitzin S, Lopes Da Silva FH (2004) Dynamics of non-convulsive epileptic phenomena modeled by a bistable neuronal network. Neuroscience 126:467-84 [Journal] [PubMed]

   Thalamocortical model of spike and wave seizures (Suffczynski et al. 2004) [Model]

Thomas E, Lytton WW (1998) Computer model of antiepileptic effects mediated by alterations in GABA(A)-mediated inhibition. Neuroreport 9:691-6 [PubMed]

van Drongelen W, Lee HC, Stevens RL, Hereld M (2007) propagation of seizure-like activity in a model of neocortex. J Clin Neurophysiol 24:182-8 [PubMed]

Zhao X, Robinson PA (2015) Generalized seizures in a neural field model with bursting dynamics. J Comput Neurosci [Journal] [PubMed]

   Neural-field model of generalized seizures (Zhao et al., 2015) [Model]

(66 refs)