ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/112834.

Afferent Integration in the NAcb MSP Cell (Wolf et al. 2005)

 Download zip file 
Help downloading and running models
Accession:112834
"We describe a computational model of the principal cell in the nucleus accumbens (NAcb), the medium spiny projection (MSP) neuron. The model neuron, constructed in NEURON, includes all of the known ionic currents in these cells and receives synaptic input from simulated spike trains via NMDA, AMPA, and GABAA receptors. ... results suggest that afferent information integration by the NAcb MSP cell may be compromised by pathology in which the NMDA current is altered or modulated, as has been proposed in both schizophrenia and addiction."
Reference:
1 . Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O'Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080-95 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Nucleus accumbens spiny projection neuron;
Channel(s): I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I A; I h; I K,Ca; I Krp; I R; I Q;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Oscillations; Schizophrenia; Addiction;
Implementer(s): Wolf, John A. [johnwolf at warpmail.net]; Moyer, Jason [jtmoyer at seas.upenn.edu];
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I A; I h; I K,Ca; I Krp; I R; I Q;
/
nacb_msp
tau_tables
readme.html
AMPA.mod
bkkca.mod *
cadyn.mod *
caL.mod *
caL13.mod *
caldyn.mod
can.mod *
caq.mod *
car.mod *
cat.mod *
GABA.mod *
kaf.mod *
kas.mod *
kir.mod *
krp.mod *
naf.mod *
nap.mod *
NMDA.mod
skkca.mod *
stim.mod *
_run_me.hoc
all_tau_vecs.hoc *
baseline_values.txt *
basic_procs.hoc
create_mspcells.hoc *
current_clamp.ses *
make_netstims.hoc
mosinit.hoc *
msp_template.hoc
nacb_main.hoc
netstims_template.hoc *
screenshot.jpg
screenshot2.jpg
stimxout_jns_sqwave.dat
synapse_templates.hoc
                            
TITLE NaP - persistent sodium current for nucleus accumbens 

COMMENT
Magistretti J, Alonso A (1999). "Biophysical properties and slow
voltage-dependent inactivation of a sustained sodium current in entorhinal
cortex layer-II principal neurons." J Gen Phys, 114: 491-509.

Traub RD, Buhl EH et al (2003). "Fast rhythmic bursting can be induced in
layer 2/3 cortical neurons by enhancing persistent na+ conductance or by
blocking BK channels." J Neurophys 89: 909-921.

Jason Moyer 2004 - jtmoyer@seas.upenn.edu
ENDCOMMENT

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
        (S)  = (siemens)
}
 
NEURON {
        SUFFIX nap
        USEION na READ ena WRITE ina
        RANGE  gnabar, ina
}
 
PARAMETER {
	gnabar   =   4e-5 (S/cm2)	: 4e-5 in soma; 1.3802e-7 in dends

	mvhalf = -52.6		(mV)	: Magistretti 1999, Fig 4
	mslope = -4.6		(mV)	: Magistretti 1999, Fig 4

	hvhalf = -48.8		(mV)	: Magistretti 1999, Fig 4
	hslope = 10.0		(mV)	: Magistretti 1999, Fig 4

	qfact = 3
}
 
STATE { m h }
 
ASSIGNED {
	ena		(mV)
        v 		(mV)
        ina		(mA/cm2)
        gna		(S/cm2)

        minf
	hinf	

	mtau	(ms)			: Traub 2003, Table A2
   }
 
BREAKPOINT {
        SOLVE state METHOD cnexp
        gna = gnabar * m * h  
        ina = gna * ( v - ena )
:        VERBATIM
:        	printf("Ena is %g\n", ena);
:        ENDVERBATIM
}
 

 
INITIAL {
	rates(v)
	
	m = minf
	h = hinf
}

FUNCTION_TABLE tauhnap (v(mV))  (ms)		: Magistretti 1999, Fig 8A

DERIVATIVE state { 
        rates(v)
        m' = (minf - m) / mtau
        h' = (hinf - h) / (tauhnap(v)/qfact)    
}
 
PROCEDURE rates(v (mV)) {  
	TABLE minf, hinf, mtau
		FROM -200 TO 200 WITH 201

		minf = 1 / (1 + exp( (v - mvhalf) / mslope))
		hinf = 1 / (1 + exp( (v - hvhalf) / hslope))
		
		UNITSOFF
		if (v < -40) {			: Traub 2003, Table A2
			mtau = 0.025 + 0.14 * exp( (v + 40 ) / 10)
		} else {
			mtau = 0.02 + 0.145 * exp( (-v - 40) / 10)
		}
		UNITSON
}
 
 

Loading data, please wait...