Olfactory bulb mitral and granule cell column formation (Migliore et al. 2007)

 Download zip file 
Help downloading and running models
Accession:114665
In the olfactory bulb, the processing units for odor discrimination are believed to involve dendrodendritic synaptic interactions between mitral and granule cells. There is increasing anatomical evidence that these cells are organized in columns, and that the columns processing a given odor are arranged in widely distributed arrays. Experimental evidence is lacking on the underlying learning mechanisms for how these columns and arrays are formed. We have used a simplified realistic circuit model to test the hypothesis that distributed connectivity can self-organize through an activity-dependent dendrodendritic synaptic mechanism. The results point to action potentials propagating in the mitral cell lateral dendrites as playing a critical role in this mechanism, and suggest a novel and robust learning mechanism for the development of distributed processing units in a cortical structure.
Reference:
1 . Migliore M, Inzirillo C, Shepherd GM (2007) Learning mechanism for column formation in the olfactory bulb. Front Integr Neurosci 1:12 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Long-term Synaptic Plasticity; Action Potentials; Learning; Olfaction;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; AMPA; NMDA; Gaba; I Na,t; I A; I K; Gaba; Glutamate;
/
plast
readme.html
kamt.mod *
kdrmt.mod *
naxn.mod *
nmdanetOB.mod *
2mc-w05-w00-e2i3-int220.hoc
2mt-s1-w05-w00-e2i3-int220.txt
2mt-s2-w05-w00-e2i3-int220.txt
2mt-s4-w05-w00-e2i3-int220.txt
gc-plast.hoc
mitral-plast-2.hoc
mosinit.hoc
plasticity-disp.hoc
screenshot.jpg
trace-gc0dend0-w05-w00-e2i3-int220.txt
trace-gc33dend0-w05-w00-e2i3-int220.txt
trace-mt0dend066-w05-w00-e2i3-int220.txt
trace-mt0soma05-w05-w00-e2i3-int220.txt
trace-time-w05-w00-e2i3-int220.txt
                            
TITLE simple NMDA receptors

: Modified from the original AMPA.mod, M.Migliore Jan 2003
: A weight of 0.0035 gives a peak conductance of 1nS in 0Mg

COMMENT
-----------------------------------------------------------------------------

	Simple model for glutamate AMPA receptors
	=========================================

  - FIRST-ORDER KINETICS, FIT TO WHOLE-CELL RECORDINGS

    Whole-cell recorded postsynaptic currents mediated by AMPA/Kainate
    receptors (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994) were used
    to estimate the parameters of the present model; the fit was performed
    using a simplex algorithm (see Destexhe et al., J. Computational Neurosci.
    1: 195-230, 1994).

  - SHORT PULSES OF TRANSMITTER (0.3 ms, 0.5 mM)

    The simplified model was obtained from a detailed synaptic model that 
    included the release of transmitter in adjacent terminals, its lateral 
    diffusion and uptake, and its binding on postsynaptic receptors (Destexhe
    and Sejnowski, 1995).  Short pulses of transmitter with first-order
    kinetics were found to be the best fast alternative to represent the more
    detailed models.

  - ANALYTIC EXPRESSION

    The first-order model can be solved analytically, leading to a very fast
    mechanism for simulating synapses, since no differential equation must be
    solved (see references below).



References

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J.  An efficient method for
   computing synaptic conductances based on a kinetic model of receptor binding
   Neural Computation 6: 10-14, 1994.  

   Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Synthesis of models for
   excitable membranes, synaptic transmission and neuromodulation using a 
   common kinetic formalism, Journal of Computational Neuroscience 1: 
   195-230, 1994.


-----------------------------------------------------------------------------
ENDCOMMENT



NEURON {
	POINT_PROCESS nmdanet
	RANGE R, g, mg
	NONSPECIFIC_CURRENT i
	GLOBAL Cdur, Alpha, Beta, Erev, Rinf, Rtau
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
	(mM) = (milli/liter)
}

PARAMETER {

	Cdur	= 1		(ms)	: transmitter duration (rising phase)
	Alpha	= 0.35		(/ms)	: forward (binding) rate
	Beta	= 0.035		(/ms)	: backward (unbinding) rate
:	Alpha	= 0.072		(/ms)	: forward (binding) rate
:	Beta	= 0.0066		(/ms)	: backward (unbinding) rate
	Erev	= 0	(mV)		: reversal potential
	mg	= 1    (mM)		: external magnesium concentration
}


ASSIGNED {
	v		(mV)		: postsynaptic voltage
	i 		(nA)		: current = g*(v - Erev)
	g 		(umho)		: conductance
	Rinf				: steady state channels open
	Rtau		(ms)		: time constant of channel binding
	synon
}

STATE {Ron Roff}

INITIAL {
	Rinf = Alpha / (Alpha + Beta)
	Rtau = 1 / (Alpha + Beta)
	synon = 0
}

BREAKPOINT {
	SOLVE release METHOD cnexp
	g = mgblock(v)*(Ron + Roff)*1(umho)
	i = g*(v - Erev)		
}

DERIVATIVE release {
	Ron' = (synon*Rinf - Ron)/Rtau
	Roff' = -Beta*Roff
}

: following supports both saturation from single input and
: summation from multiple inputs
: if spike occurs during CDur then new off time is t + CDur
: ie. transmitter concatenates but does not summate
: Note: automatic initialization of all reference args to 0 except first


FUNCTION mgblock(v(mV)) {
	TABLE 
	DEPEND mg
	FROM -140 TO 80 WITH 1000

	: from Jahr & Stevens

	mgblock = 1 / (1 + exp(0.062 (/mV) * -v) * (mg / 3.57 (mM)))
}


NET_RECEIVE(weight, on, nspike, r0, t0 (ms)) {
	: flag is an implicit argument of NET_RECEIVE and  normally 0
        if (flag == 0) { : a spike, so turn on if not already in a Cdur pulse
		nspike = nspike + 1
		if (!on) {
			r0 = r0*exp(-Beta*(t - t0))
			t0 = t
			on = 1
			synon = synon + weight
			state_discontinuity(Ron, Ron + r0)
			state_discontinuity(Roff, Roff - r0)
		}
		: come again in Cdur with flag = current value of nspike
		net_send(Cdur, nspike)
        }
	if (flag == nspike) { : if this associated with last spike then turn off
		r0 = weight*Rinf + (r0 - weight*Rinf)*exp(-(t - t0)/Rtau)
		t0 = t
		synon = synon - weight
		state_discontinuity(Ron, Ron - r0)
		state_discontinuity(Roff, Roff + r0)
		on = 0
	}
}


Loading data, please wait...