Axonal NaV1.6 Sodium Channels in AP Initiation of CA1 Pyramidal Neurons (Royeck et al. 2008)

 Download zip file 
Help downloading and running models
Accession:115356
"... We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. ... In combination with simulations using a realistic computer model of a CA1 pyramidal cell, our results imply that a hyperpolarized voltage-dependence of activation of AIS NaV1.6 channels is important both in determining spike threshold and localizing spike initiation to the AIS. ... These results suggest that NaV1.6 subunits at the AIS contribute significantly to its role as spike trigger zone and shape repetitive discharge properties of CA1 neurons."
Reference:
1 . Royeck M, Horstmann MT, Remy S, Reitze M, Yaari Y, Beck H (2008) Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. J Neurophysiol 100:2361-80 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I p,q; I A; I K; I M; I h; I K,Ca; I Calcium; I Q;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.6 SCN8A;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Temporal Pattern Generation;
Implementer(s): Horstmann, Marie-Therese [mhorstma at uni-bonn.de];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I N; I T low threshold; I p,q; I A; I K; I M; I h; I K,Ca; I Calcium; I Q;
TITLE naIn
: intermedaite inactivating Na current  
: Inakctivation from Magistretti and Alonso 1999, J. Gen. Physiol.

NEURON {
	SUFFIX naIn
	USEION na READ ena WRITE ina
	RANGE  gbar, thegna, htau
	GLOBAL minf, hinf :, mtau, 
}

PARAMETER {
	gbar = .0052085   	(mho/cm2)
	
	:q10m=3.1
	:q10h=2.3
	
	mtau = 1 (ms)
	:htau = 5 (ms)
	
	eNa = 55 	(mV)		:Golomb et al.
	ena		(mV)            : must be explicitly def. in hoc
	celsius (degC)
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	htau (ms)	
:mtau (ms)	 	
}
 

STATE { m h}

: hier eigener Befehl

BREAKPOINT {
        SOLVE states METHOD cnexp
	trates(v)	
	
	thegna =gbar*m*h       
	ina = thegna * (v - eNa)
	} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        :trates(v)      
	m' = (minf-m)/mtau
        h' = (hinf-h)/htau

}



FUNCTION alphah(vm (mV)) (/ms/mV)  { LOCAL a, b, k
  UNITSOFF
  a = -0.00288
  b = -0.049
  k = 4.63	
  alphah = 1000*(a*vm+b)/(1-exp((vm+b/a)/k)) :factor 1000 for units conversion
  UNITSON
}

:nachsehen Einheiten function

FUNCTION betah(vm (mV)) (/ms/mV) { LOCAL a, b, k
  UNITSOFF
  a = 0.00694
  b = 0.447
  k = -2.63
  betah = 1000*(a*vm+b)/(1-exp((vm+b/a)/k)) :factor 1000 for units conversion
  UNITSON
}

PROCEDURE trates(vm (mV)) {LOCAL alpha, beta
	  
	UNITSOFF
        minf = (1/(1+exp(-(v+52.6)/4.6))) 
	alpha = alphah(vm)
	beta = betah(vm)	
	hinf = alpha/(alpha+beta) 
	htau = 1/(alpha+beta)	: 
	UNITSON
}


UNITSON

Loading data, please wait...