Ca3 pyramidal neuron: membrane response near rest (Hemond et al. 2009)

 Download zip file 
Help downloading and running models
Accession:118098
In this paper, the model was used to show how the temporal summation of excitatory inputs in CA3 pyramidal neurons was affected by the presence of Ih in the dendrites in a frequency- and distance-dependent fashion.
Reference:
1 . Hemond P, Migliore M, Ascoli GA, Jaffe DB (2009) The membrane response of hippocampal CA3b pyramidal neurons near rest: Heterogeneity of passive properties and the contribution of hyperpolarization-activated currents. Neuroscience 160:359-70 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; AMPA; I h; Glutamate;
/
ca3-summ
readme.txt
distr.mod *
hca3.mod
fig-8b.hoc
fixnseg.hoc *
geo-cell1zr.hoc *
mosinit.hoc
                            
TITLE I-h channel from Magee 1998 for distal dendrites
: with tapering and 2-exp to model currents in CA3, M.Migliore Dec.2005

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-82   	(mV)
	kl=-7.8
        vhalft=-65   	(mV)
        a0t=0.012      	(/ms)
        zetat=8    	(1)
        gmt=.15   	(1)
	q10=4.5
	qtl=1
	b0=20
	vc=-70
	kc=-3
	as=0.79
        vhalfts=-65   	(mV)
        a0ts=0.0019     	(/ms)
        zetats=8    	(1)
        gmts=.18   	(1)
	b0s=140
}


NEURON {
	SUFFIX hd
	NONSPECIFIC_CURRENT i
        RANGE ghdbar
        GLOBAL linf,taul, tauls
}

STATE {
        l
	ls
}

ASSIGNED {
	i (mA/cm2)
        linf      
        taul
        tauls
        ghd
}

INITIAL {
	rate(v)
	l=linf
	ls=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*(ls*as+l*(1-as))
	i = ghd*(v-ehd)

}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

FUNCTION alpts(v(mV)) {
  alpts = exp(0.0378*zetats*(v-vhalfts)) 
}

FUNCTION betts(v(mV)) {
  betts = exp(0.0378*zetats*gmts*(v-vhalfts)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
        ls' =  (linf - ls)/tauls
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
:        qt=q10^((celsius-33)/10)
        linf = (1/(1 + exp(-(v-vhalfl)/kl)))
        a = alpt(v)
        taul = b0 + bett(v)/(a0t*(1+a))
        a = alpts(v)
        tauls = b0s + betts(v)/(a0ts*(1+a))
}















Loading data, please wait...