Gap junction coupled network of striatal fast spiking interneurons (Hjorth et al. 2009)

 Download zip file 
Help downloading and running models
Gap junctions between striatal FS neurons has very weak ability to synchronise spiking. Input uncorrelated between neighbouring neurons is shunted, while correlated input is not.
1 . Hjorth J, Blackwell KT, Kotaleski JH (2009) Gap junctions between striatal fast-spiking interneurons regulate spiking activity and synchronization as a function of cortical activity. J Neurosci 29:5276-86 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum fast spiking interneuron;
Channel(s): I A; I_K,Na;
Gap Junctions: Gap junctions;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS; MATLAB;
Model Concept(s): Activity Patterns; Ion Channel Kinetics; Synchronization; Detailed Neuronal Models;
Implementer(s): Hjorth, Johannes [hjorth at];
Search NeuronDB for information about:  I A; I_K,Na; Gaba; Glutamate;
% To generate Figure 5A run the following MATLAB scripts:
% runTwoFSwithGJforIFplots.m
% readIFSscanFSpair.m
% makeIFplots.m

initTime = 0.4;

figure(1), clf
figure(2), clf

for i = 1 %length(rsu)
    %rs = rsu(i);
    %idx = find(randSeed == rs);
    idx = 1:fileCtr;
    [cur, cidx] = sort(curAmp(idx));
    clear freq
    for j = 1:length(idx)
      for k = 1:length(savedSpikeTimes{idx(j)})
        freq(j,k) = length(find(savedSpikeTimes{idx(j)}{k} > initTime));
    % F = freq/(length(savedSpikeTimes{idx(j)})*(maxTime(idx(j))-initTime));
    F = freq/(maxTime(idx(j))-initTime);
    % If you ran runTenIFscan.m then the first neuron is the standard neuron

%    pA = plot(1e12*cur,F(cidx,1), 'k-', 'LineWidth', 2);   % Ref
%    hold on
    pB = plot(1e12*cur,F(cidx,2), 'k', 'LineWidth', 2);   % GJ to similar act
    hold on
    pC = plot(1e12*cur,F(cidx,4), 'k--', 'LineWidth', 2);   % GJ to half act
    pD = plot(1e12*cur,F(cidx,6), 'r--', 'LineWidth', 2);    % GJ to no act
    pE = plot(1e12*cur,F(cidx,8), 'r-', 'LineWidth', 2);   % GJ to hyper act
%    legend([pA(1) pB(1) pC(1) pD(1) pE(1)], ...
%           'Unconnected reference', ...
%           'Coupled to identical', ...
%           'Coupled to half activated', ...
%           'Coupled to no activation', ...
%           'Coupled to hyperpolarised');

    legend([pB(1) pC(1) pD(1) pE(1)], ...
           'Identical', ...
           'Half current', ...
           'No current', ...
           'Hyperpolarising', ...
           'Location', 'Best');
    box off   
%    plot(1e12*cur,F(cidx,:), 'Color', [1 1 1]*0.5, 'LineWidth', 2)    
%    hold on
%    plot(1e12*cur,F(cidx,1),'k', 'LineWidth',2)

    xlabel('Current (pA)','fontsize',24)
    ylabel('Frequency (Hz)','fontsize',24)
    title('Effect of coupled neighbours input','fontsize',24)
    curFiner = linspace(min(cur),max(cur),1000);
    voltFiner = interp1(cur,F(cidx,:), curFiner,'cubic');
    plot(1e12*curFiner,voltFiner,'Color',[1 1 1]*0.5)
    hold on
    plot(1e12*curFiner, voltFiner(:,1),'k')
    xlabel('Current (pA)')
    ylabel('Frequency (Hz)')

saveas(gcf, 'FIGS/FS-IFplot-effect-of-neighbour-input.fig', 'fig')

Loading data, please wait...