ModelDB is moving. Check out our new site at https://modeldb.science. The corresponding page is https://modeldb.science/119266.

Modelling reduced excitability in aged CA1 neurons as a Ca-dependent process (Markaki et al. 2005)

 Download zip file 
Help downloading and running models
Accession:119266
"We use a multi-compartmental model of a CA1 pyramidal cell to study changes in hippocampal excitability that result from aging-induced alterations in calcium-dependent membrane mechanisms. The model incorporates N- and L-type calcium channels which are respectively coupled to fast and slow afterhyperpolarization potassium channels. Model parameters are calibrated using physiological data. Computer simulations reproduce the decreased excitability of aged CA1 cells, which results from increased internal calcium accumulation, subsequently larger postburst slow afterhyperpolarization, and enhanced spike frequency adaptation. We find that aging-induced alterations in CA1 excitability can be modelled with simple coupling mechanisms that selectively link specific types of calcium channels to specific calcium-dependent potassium channels."
Reference:
1 . Markaki M, Orphanoudakis S, Poirazi P (2005) Modelling reduced excitability in aged CA1 neurons as a calcium-dependent process Neurocomputing 65-66:305-314
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I N; I A; I K; I M; I K,Ca; I R;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Aging/Alzheimer`s;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I N; I A; I K; I M; I K,Ca; I R;
/
CA1_Aged
lib
basic_graphics.hoc *
basic-graphics.hoc *
choose-secs.hoc *
current-balance.hoc
cut-sections.hoc *
deduce-ratio.hoc *
find-gmax.hoc *
GABA_shiftsyn.hoc *
GABA_shiftsyn_bg.hoc *
ken.h *
map-segments-to-3d.hoc *
maxmin.hoc *
mod_func.c *
newshiftsyn *
newshiftsyn.c *
num-rec.h *
salloc.hoc *
shiftsyn-init_bg.hoc *
shiftsyn-initA.hoc *
spikecount.hoc *
tune-epsps.hoc *
vector-distance.hoc *
verbose-system.hoc *
                            
// set the pointers for AMPA, NMDA, GABA_A or GABA_B synapses
// to a defined location

econ.xopen_library("Terrence","find-gmax")

proc salloc() { local nmdaR
// $o1 and $o2 are the first 2 arguments to this function
// They should be an AMPA and NMDA synapse or a
// GABA_A and GABA_B synapse

// .loc() places them at a normalized and segment-resolved position [0..1] 
// along the section	 

  $o1.loc($3)
  $o2.loc($3)

// here we call a library function to figure out the maximum AMPA
// conductance which should be used at this synapse based on synapse
// tunings calculated from a previously run tuning experiments

// this number will be anywhere from 0.5nS to 5nS depending on what
// was required to generate a 5mV local depolarization
  $o1.gmax = find_gmax($3) 

// next we decide what the NMDA-AMPA gmax ratio should be --- ie,
// a Mainen-Sejnowski article suggested that maximum NMDA should be
// (0.6)*gbar_AMPA. 

  nmdaR = deduce_ratio()

// Assuming (and expecting and hoping!) that the first object passed in
// was an AMPA synapse and the second object passed in was an NMDA
// synapse, then the NMDA synapses' gbar_NMDA is now changed by a factor
// of nmdaR

  $o2.gmax=$o1.gmax*nmdaR
//  printf("ampa: %g nmda: %g * %g\n", $o1.gmax, $o1.gmax, nmdaR)
}

// This is a variation of the above designed to work with
// GABA syns as well as AMPA syns.

// It is a work in progress.
proc SALLOC() { local ratio, ampa_flag
        ampa_flag=0
        ampa_flag=$4
  $o1.loc($3)
  $o2.loc($3)
        if (ampa_flag) {
                $o1.gmax=find_gmax($3) 
                nmdaR=deduce_ratio()
                $o2.gmax=$o1.gmax*nmdaR
//                printf("ampa: %g nmda: %g * %g\n", $o1.gmax, $o1.gmax, nmdaR)
        } else {
                $o1.gmax=GABA_AMPA_RATIO*find_gmax($3) 
                nmdaR=deduce_ratio()
                $o2.gmax=GABAB_GABAA_RATIO*$o1.gmax
//                printf("gabaa: %g gabab: %g * %g\n", $o1.gmax, $o1.gmax, GABAB_GABAA_RATIO)
        }
}


// same for GABAa synapses

proc SALLOC_GABAa() { local flag
        flag=0
        flag=$3
        $o1.loc($2)

        if (flag){  
            $o1.gmax=GABA_AMPA_RATIO*find_gmax($2) // as a function of ampa conductance 
        } else {
            $o1.gmax = $4
        }
//        printf("gabaa: %g\n", $o1.gmax)
        
}

// same for GABAb synapses

proc SALLOC_GABAb() { local flag
        flag=0
        flag=$3
        $o1.loc($2)

        if (flag){  
            $o1.gmax=GABAb_GABAa_RATIO*(GABA_AMPA_RATIO*find_gmax($2)) // as a function of ampa conductance 
        } else {
            $o1.gmax = $4
        }
//        printf("gabab: %g\n", $o1.gmax)
        
}

// display synaptic locations on a graph

proc salloc2() {
/*
  $o1.loc($3)
  $o2.loc($3)
  $o1.gmax=find_gmax($3) 
  $o2.gmax=$o1.gmax*deduce_ratio()
  print $o1, $o1.gmax
  print $o2, $o2.gmax
*/
  salloc($o1,$o2,$3)    
  if ($4) {
    $o5.point_mark($o1,$6)
  }
}


Loading data, please wait...