Computational neuropharmacology of CA1 pyramidal neuron (Ferrante et al. 2008)

 Download zip file 
Help downloading and running models
Accession:119283
In this paper, the model was used to show how neuroactive drugs targeting different neuronal mechanisms affect the signal integration in CA1 pyramidal neuron. Ferrante M, Blackwell KT, Migliore M, Ascoli GA (2008)
Reference:
1 . Ferrante M, Blackwell KT, Migliore M, Ascoli GA (2008) Computational models of neuronal biophysics and the characterization of potential neuropharmacological targets. Curr Med Chem 15:2456-71 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Pathophysiology; Epilepsy; Synaptic Integration; Parkinson's; Aging/Alzheimer`s; Schizophrenia; Spike Frequency Adaptation;
Implementer(s): Ferrante, Michele [mferr133 at bu.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,t; I A; I K; I h; Gaba; Glutamate;
/
FerranteEtAl2008
readme.html
distr.mod *
h.mod *
kadist.mod *
kaprox.mod *
kdrca1.mod *
na3n.mod *
naxn.mod *
netstimm.mod *
Fig.4E.hoc
fixnseg.hoc *
geo5038804.hoc *
mosinit.hoc
n128su.hoc *
n128su.ses *
screenshot.jpeg
                            
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
        ek (mV)		: must be explicitely def. in hoc
	celsius		(degC)
	gkdrbar=.003 (mho/cm2)
        vhalfn=13   (mV)
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
	nmax=2  (1)
	q10=1
}


NEURON {
	SUFFIX kdr
	USEION k READ ek WRITE ik
        RANGE gkdr,gkdrbar
	GLOBAL ninf,taun
}

STATE {
	n
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        gkdr
        taun
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gkdr = gkdrbar*n
	ik = gkdr*(v-ek)

}

INITIAL {
	rates(v)
	n=ninf
}


FUNCTION alpn(v(mV)) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmax) {taun=nmax}
}















Loading data, please wait...