Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
64
155
174
201
220
247
265
316
337
350
356
362
403
408
413
487
513
519
524
557
571
651
694
740
768
779
864
890
895
902
928
990
1021
1072
1109
1164
1192
1202
1311
1328
1333
1339
1365
1440
1465
1471
1483
1504
1525
1543
1548
1564
1584
1645
1649
1666
1695
1739
1745
1756
1827
1861
1883
1949
1954
1965
2033
2101
2114
2120
2294
2301
2305
2346
2380
2422
2467
2472
2502
2520
2556
2685
2690
2697
2730
2746
2867
2916
2993
3018
3051
3075
3134
3170
3276
3339
3344
3395
3444
3449
3454
3511
3541
3575
3621
3643
3648
3664
3718
3735
3748
3771
3784
3836
3874
3904
3929
3934
3983
4013
4026
4074
4179
4200
4205
4211
4229
4238
4277
4335
4343
4371
4512
4540
4563
4575
4603
4630
4691
4701
4779
4840
4859
4896
5018
5044
5095
5128
5168
5176
5184
5210
5221
5235
5265
5333
5399
5456
5535
5573
5618
5623
5629
5663
5707
5733
5762
5772
5779
5863
5904
5911
5920
5939
5958
6063
6088
6126
6149
6156
6183
6189
6239
6262
6358
6405
6413
6435
6506
6533
6553
6636
6705
6730
6751
6764
6781
6819
6872
6922
6929
6941
6959
6978
6991
7001
7080
7182
7186
7250
7283
7299
7324
7344
7460
7497
7522
7527
7534
7647
7662
7707
7712
7722
7727
7743
7775
7823
7940
7966
8041
8046
8134
8172
8243
8263
8293
8341
8351
8404
8415
8505
8553
8571
8577
8608
8624
8668
8687
8707
8712
8769
8796
8855
8877
8882
8902
8926
8930
8986
9005
9038
9067
9078
9084
9115
9143
9182
9216
9266
9376
9387
9413
9443
9472
9477
9483
9515
9544
9550
9568
9582
9624
9641
9657
9698
9728
9737
9782
9802
9853
9873
9884
9922
9954
9989

Loading data, please wait...