Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
5
54
71
75
256
282
296
363
456
478
482
496
507
520
534
612
644
667
691
853
857
865
902
918
963
980
1035
1089
1095
1131
1179
1214
1264
1310
1333
1494
1545
1594
1605
1617
1649
1696
1758
1763
1785
1824
1841
1847
1853
1906
1911
1939
2030
2044
2058
2079
2153
2163
2225
2296
2318
2323
2376
2442
2474
2516
2521
2566
2579
2606
2633
2646
2688
2713
2774
2848
2859
2866
2879
2917
3005
3100
3111
3178
3244
3425
3430
3435
3472
3479
3497
3503
3540
3574
3580
3657
3709
3766
3783
3818
3909
3920
3926
3947
3973
4003
4053
4072
4083
4149
4191
4197
4243
4271
4296
4343
4350
4363
4381
4466
4535
4584
4590
4609
4644
4674
4729
4742
4790
4849
4965
4995
5011
5016
5031
5056
5102
5121
5149
5166
5229
5248
5379
5383
5441
5515
5584
5614
5635
5653
5698
5822
5863
5868
5975
6004
6143
6175
6211
6254
6267
6317
6336
6430
6449
6519
6551
6558
6625
6642
6680
6750
6788
6863
6903
6916
6954
6995
7034
7064
7084
7090
7128
7152
7192
7204
7241
7252
7274
7323
7373
7428
7558
7633
7644
7684
7722
7733
7780
7815
7845
7854
7920
7967
8056
8062
8103
8211
8229
8254
8282
8320
8360
8383
8399
8448
8454
8502
8565
8581
8592
8597
8629
8697
8708
8714
8718
8753
8839
8852
8877
8887
8892
8897
8975
8986
9042
9151
9197
9221
9226
9346
9351
9373
9384
9407
9447
9472
9499
9525
9604
9692
9734
9748
9753
9782
9816
9821
9855
9868
9881
9977

Loading data, please wait...