Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
37
61
67
103
109
128
180
196
201
209
231
251
257
291
323
331
335
360
400
421
462
470
476
491
495
501
508
513
587
601
636
681
749
757
815
829
839
844
850
940
1002
1027
1179
1188
1193
1196
1219
1273
1318
1335
1340
1375
1380
1416
1455
1473
1486
1504
1550
1568
1573
1594
1653
1674
1692
1721
1767
1781
1800
1805
1934
1949
1970
1988
2001
2020
2041
2047
2078
2082
2087
2193
2216
2314
2320
2353
2362
2411
2418
2447
2481
2495
2500
2516
2522
2580
2657
2664
2688
2707
2731
2871
2876
2881
2932
2937
3002
3011
3121
3166
3244
3259
3318
3322
3340
3358
3368
3454
3489
3501
3507
3515
3521
3533
3635
3643
3661
3668
3674
3697
3724
3731
3759
3767
3776
3811
3832
3837
3843
3848
3858
3863
3878
3885
3889
3911
3926
3947
3984
4017
4024
4049
4053
4067
4119
4135
4164
4184
4204
4216
4221
4270
4275
4339
4368
4402
4429
4448
4474
4488
4493
4514
4519
4537
4573
4630
4657
4669
4684
4699
4736
4761
4825
4829
4841
4852
4863
4899
4911
4916
4944
4951
4960
4990
4994
5017
5021
5052
5093
5114
5118
5140
5151
5159
5175
5193
5219
5271
5285
5290
5296
5301
5307
5321
5327
5433
5438
5453
5473
5537
5558
5583
5598
5630
5635
5653
5736
5759
5789
5803
5836
5951
5962
6005
6059
6114
6119
6166
6184
6189
6194
6238
6259
6267
6277
6295
6331
6336
6406
6431
6435
6476
6482
6510
6515
6522
6598
6667
6695
6760
6790
6831
6836
6915
7004
7022
7041
7047
7073
7107
7116
7151
7187
7199
7288
7295
7326
7386
7440
7535
7541
7574
7641
7671
7773
7779
7785
7921
7939
7955
7987
8016
8052
8085
8163
8189
8194
8241
8311
8352
8370
8410
8435
8464
8477
8500
8576
8590
8618
8663
8681
8692
8696
8719
8734
8742
8752
8763
8774
8779
8795
8832
8855
8896
8916
8968
8982
8987
8992
9009
9049
9076
9082
9121
9129
9135
9228
9241
9247
9311
9374
9380
9393
9407
9447
9454
9482
9551
9641
9659
9686
9690
9700
9705
9718
9747
9766
9797
9833
9856
9865
9880
9895
9911
9929

Loading data, please wait...