Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
3
7
18
38
103
153
164
173
189
194
231
236
245
251
297
330
335
360
419
462
470
476
481
504
508
513
534
554
569
575
580
586
616
637
677
682
798
804
814
850
865
917
989
1018
1024
1109
1113
1146
1179
1187
1192
1197
1202
1219
1231
1258
1273
1285
1303
1309
1319
1336
1362
1367
1456
1485
1509
1550
1554
1567
1574
1595
1608
1625
1653
1674
1694
1721
1767
1782
1812
1877
1882
1910
1914
1933
1941
1959
2033
2059
2078
2083
2097
2102
2121
2134
2139
2155
2174
2181
2216
2220
2239
2269
2288
2313
2340
2346
2351
2362
2406
2410
2418
2434
2489
2516
2563
2607
2615
2638
2648
2664
2688
2708
2730
2743
2754
2813
2818
2872
2896
2902
2908
2932
2984
2990
3002
3021
3026
3076
3081
3097
3166
3190
3211
3228
3239
3244
3318
3339
3358
3368
3398
3410
3422
3490
3514
3526
3543
3589
3600
3635
3657
3662
3674
3685
3759
3768
3811
3831
3877
3885
3896
3948
3953
3991
4038
4050
4054
4059
4083
4099
4107
4119
4125
4136
4240
4245
4282
4315
4338
4396
4402
4430
4466
4487
4494
4506
4516
4527
4537
4542
4587
4604
4669
4674
4688
4694
4699
4745
4800
4830
4840
4868
4899
4911
4921
4935
4940
4959
4990
4995
5017
5021
5045
5052
5058
5093
5106
5117
5138
5168
5174
5180
5185
5190
5195
5223
5273
5321
5366
5411
5422
5506
5511
5538
5551
5570
5630
5634
5645
5735
5748
5774
5799
5804
5824
5854
5866
5872
5880
5896
5920
5956
5961
5988
6006
6013
6050
6056
6061
6067
6075
6080
6085
6108
6114
6147
6184
6189
6194
6223
6238
6430
6435
6476
6482
6500
6511
6515
6528
6555
6568
6574
6581
6589
6599
6634
6638
6650
6657
6695
6727
6759
6776
6831
6857
6936
6948
6956
6962
7022
7068
7073
7106
7125
7159
7170
7175
7247
7285
7289
7327
7387
7421
7435
7440
7462
7489
7535
7567
7573
7578
7672
7690
7706
7740
7754
7784
7799
7879
7920
7927
7943
7955
7996
8014
8039
8073
8085
8097
8139
8179
8281
8299
8313
8326
8353
8395
8402
8410
8445
8449
8464
8477
8483
8488
8559
8595
8604
8618
8643
8649
8663
8710
8715
8720
8724
8794
8800
8822
8839
8863
8890
8917
8961
8967
8982
8986
8991
8996
9032
9041
9049
9076
9112
9120
9135
9263
9338
9393
9399
9408
9413
9419
9424
9440
9454
9531
9551
9658
9689
9700
9705
9711
9721
9747
9750
9778
9797
9802
9822
9865
9872
9895
9919
9924
9930
9945
9970
9994

Loading data, please wait...