Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
71
93
122
205
211
217
253
296
332
338
346
376
380
403
435
451
469
509
564
592
636
640
645
674
745
825
841
893
900
909
924
964
975
1068
1084
1111
1116
1190
1213
1290
1319
1339
1351
1365
1370
1376
1383
1402
1464
1497
1532
1582
1633
1650
1671
1717
1722
1754
1812
1877
1925
1956
2049
2100
2125
2130
2191
2196
2206
2210
2264
2326
2334
2340
2385
2395
2438
2449
2463
2529
2554
2559
2573
2615
2680
2689
2706
2712
2717
2727
2741
2781
2787
2838
2847
2979
3034
3072
3140
3157
3253
3285
3320
3335
3343
3384
3394
3411
3426
3445
3456
3494
3500
3564
3704
3775
3787
3823
3838
3842
3894
3919
3969
4013
4018
4024
4051
4077
4103
4116
4168
4173
4182
4264
4286
4350
4372
4401
4445
4494
4574
4580
4628
4638
4714
4719
4802
4814
4825
4841
4880
4904
4917
4931
4989
5136
5142
5197
5221
5375
5425
5430
5441
5513
5553
5559
5584
5616
5638
5708
5756
5848
5873
5892
5914
5998
6012
6024
6044
6053
6122
6142
6183
6332
6428
6456
6500
6516
6561
6565
6571
6623
6718
6771
6801
6839
6852
6919
6930
6936
6954
6964
7019
7032
7047
7106
7118
7145
7164
7178
7216
7220
7230
7273
7279
7286
7291
7339
7441
7455
7478
7493
7536
7554
7565
7601
7706
7729
7739
7842
7849
7874
7919
7929
7985
8002
8007
8045
8185
8207
8220
8378
8394
8411
8475
8480
8533
8590
8604
8618
8720
8784
8803
8821
8852
8858
8877
8882
8950
8998
9005
9017
9061
9222
9263
9288
9298
9304
9309
9318
9342
9360
9426
9515
9521
9527
9568
9592
9636
9655
9664
9728
9764
9811
9856
9878
9895
9979

Loading data, please wait...