Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
2
6
18
37
71
82
104
117
130
136
142
153
165
173
177
195
202
209
231
237
243
297
308
322
331
335
344
349
360
365
388
403
420
462
470
477
482
489
495
503
508
519
534
586
616
621
672
681
706
762
767
809
814
837
844
849
865
917
982
988
1063
1108
1113
1131
1138
1179
1192
1197
1247
1252
1257
1267
1272
1282
1286
1302
1309
1320
1332
1336
1352
1357
1457
1497
1515
1550
1555
1568
1574
1585
1595
1608
1625
1646
1651
1665
1674
1721
1727
1736
1768
1853
1858
1877
1882
1909
1914
1942
1949
1964
1969
2001
2059
2077
2083
2087
2097
2121
2134
2164
2174
2207
2216
2239
2243
2265
2270
2295
2347
2395
2406
2411
2418
2433
2482
2516
2522
2549
2562
2615
2656
2677
2689
2708
2754
2758
2769
2780
2804
2818
2822
2838
2844
2850
2862
2880
2897
2902
2919
2933
2971
2976
2990
3002
3008
3020
3033
3052
3065
3096
3114
3166
3172
3198
3216
3228
3240
3244
3258
3264
3269
3275
3286
3291
3318
3339
3383
3398
3412
3431
3502
3514
3519
3527
3532
3564
3573
3589
3601
3622
3627
3635
3656
3660
3674
3684
3725
3730
3741
3759
3766
3776
3785
3812
3867
3872
3877
3885
3890
3896
3933
3949
3954
3961
3991
4014
4024
4039
4044
4048
4066
4099
4106
4119
4135
4169
4188
4203
4216
4222
4226
4240
4264
4269
4385
4402
4429
4466
4487
4493
4506
4527
4538
4573
4603
4657
4684
4689
4698
4710
4732
4745
4750
4775
4783
4800
4817
4885
4910
4935
4958
4981
5017
5021
5034
5040
5045
5080
5106
5117
5151
5155
5160
5168
5174
5186
5210
5223
5235
5249
5271
5314
5320
5337
5344
5355
5367
5452
5474
5536
5557
5565
5570
5595
5632
5643
5683
5688
5693
5706
5727
5748
5824
5837
5854
5866
5880
5906
5919
5966
6006
6012
6029
6055
6060
6066
6071
6075
6086
6097
6108
6164
6184
6203
6238
6257
6306
6317
6395
6406
6416
6431
6435
6454
6466
6477
6482
6494
6500
6511
6516
6522
6528
6542
6559
6568
6574
6589
6598
6639
6657
6666
6729
6741
6809
6831
6887
6936
6948
6952
6956
6962
6983
7012
7018
7023
7031
7062
7067
7073
7077
7091
7106
7150
7169
7187
7198
7204
7216
7221
7235
7296
7326
7348
7377
7387
7392
7397
7409
7425
7435
7440
7459
7484
7498
7510
7550
7574
7578
7628
7638
7647
7653
7658
7672
7688
7728
7739
7754
7759
7765
7772
7802
7832
7840
7879
7885
7907
7920
7928
7938
7949
7955
7960
7981
8016
8026
8040
8058
8064
8085
8103
8131
8139
8150
8161
8179
8204
8234
8292
8303
8313
8338
8352
8361
8374
8379
8395
8402
8410
8446
8463
8469
8478
8483
8540
8559
8589
8603
8618
8663
8675
8680
8686
8710
8715
8719
8724
8735
8751
8794
8830
8848
8854
8863
8901
8960
8967
8983
8992
9007
9019
9023
9031
9049
9069
9077
9097
9121
9135
9144
9159
9165
9193
9202
9245
9269
9296
9311
9339
9373
9380
9394
9408
9419
9425
9430
9449
9454
9478
9482
9487
9493
9531
9545
9579
9585
9596
9601
9633
9645
9658
9677
9690
9695
9700
9705
9714
9721
9743
9747
9751
9777
9789
9810
9823
9864
9872
9877
9884
9894
9904
9908
9913
9919
9924
9930
9942
9970
9993
9998

Loading data, please wait...