Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
29
36
43
61
67
81
87
106
117
181
208
284
304
388
477
512
531
578
612
636
645
652
683
703
787
905
934
996
1022
1049
1072
1094
1128
1133
1138
1195
1262
1299
1313
1329
1345
1368
1396
1430
1456
1470
1537
1577
1597
1628
1672
1691
1702
1759
1768
1878
1894
1916
1956
2018
2030
2047
2051
2086
2099
2113
2148
2169
2260
2265
2388
2482
2509
2544
2571
2576
2639
2694
2715
2730
2773
2793
2825
2831
2836
2856
2878
2932
2954
2972
2985
3009
3014
3101
3106
3111
3153
3184
3190
3195
3293
3300
3304
3355
3362
3412
3526
3563
3613
3686
3711
3722
3749
3783
3795
3807
3812
3834
3840
3922
3932
3995
4013
4038
4043
4058
4087
4147
4186
4200
4307
4364
4485
4567
4608
4665
4730
4750
4832
4983
5037
5087
5102
5116
5148
5422
5514
5537
5542
5548
5581
5656
5710
5723
5875
5883
5900
5936
6013
6035
6106
6222
6242
6271
6352
6363
6379
6463
6523
6530
6578
6607
6648
6674
6741
6770
6836
6845
6850
6900
6910
7035
7055
7108
7112
7141
7146
7163
7249
7255
7277
7314
7345
7370
7431
7511
7558
7637
7649
7668
7682
7710
7746
7835
7847
7856
7895
7920
8008
8027
8066
8080
8085
8113
8145
8152
8157
8207
8228
8282
8320
8337
8363
8456
8462
8496
8501
8560
8573
8586
8614
8620
8641
8659
8665
8671
8691
8780
8810
8816
8833
8940
8948
8953
8959
9012
9051
9062
9069
9120
9136
9168
9188
9208
9270
9291
9307
9408
9472
9502
9515
9592
9649
9671
9757
9788
9842
9935
9989

Loading data, please wait...