Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
3
7
36
40
71
131
135
141
153
174
195
200
215
230
242
321
336
349
360
430
436
470
476
490
508
513
535
585
614
637
666
671
780
798
814
836
850
865
883
917
928
975
983
989
1019
1024
1086
1109
1137
1159
1169
1179
1193
1218
1247
1253
1258
1273
1285
1290
1295
1320
1339
1345
1402
1456
1487
1492
1526
1530
1562
1567
1575
1581
1586
1595
1609
1625
1640
1652
1675
1694
1721
1735
1768
1797
1825
1842
1874
1882
1910
1914
1922
1926
1947
1964
1968
2041
2059
2078
2082
2098
2103
2121
2156
2174
2193
2216
2220
2227
2238
2270
2283
2295
2325
2347
2352
2396
2407
2418
2427
2434
2440
2462
2468
2515
2563
2580
2606
2615
2656
2664
2708
2718
2724
2742
2754
2805
2817
2822
2837
2851
2862
2871
2876
2880
2919
2932
2959
3002
3065
3095
3157
3162
3186
3198
3204
3223
3228
3238
3244
3270
3274
3319
3339
3349
3389
3419
3453
3474
3514
3519
3525
3564
3574
3579
3585
3589
3595
3600
3606
3621
3643
3656
3661
3675
3684
3710
3717
3725
3737
3741
3759
3766
3784
3794
3812
3843
3877
3886
3891
3896
3918
3949
3961
3991
4024
4030
4049
4059
4067
4087
4107
4119
4124
4135
4144
4170
4175
4183
4187
4239
4270
4283
4314
4325
4337
4366
4403
4409
4466
4475
4486
4493
4515
4537
4542
4548
4573
4587
4604
4631
4638
4644
4655
4668
4673
4683
4689
4699
4783
4800
4812
4817
4829
4835
4877
4882
4911
4935
4940
4950
4957
5034
5045
5050
5154
5160
5175
5186
5223
5248
5269
5274
5280
5289
5306
5313
5330
5367
5377
5391
5407
5453
5458
5506
5512
5536
5551
5557
5570
5575
5660
5694
5726
5749
5764
5786
5823
5836
5853
5870
5910
5920
5934
5982
6000
6006
6013
6028
6062
6067
6109
6113
6184
6198
6203
6223
6237
6258
6318
6392
6430
6435
6440
6465
6511
6516
6528
6547
6568
6574
6589
6620
6633
6638
6684
6695
6741
6760
6823
6887
6936
6956
6963
6984
7023
7031
7037
7072
7077
7091
7097
7106
7150
7159
7199
7204
7235
7262
7338
7347
7387
7392
7397
7401
7440
7474
7484
7500
7535
7562
7568
7574
7578
7583
7648
7671
7689
7697
7740
7754
7802
7857
7879
7911
7920
7938
7950
7955
7959
7996
8016
8021
8039
8063
8086
8098
8103
8109
8120
8139
8150
8171
8234
8337
8343
8352
8362
8396
8403
8434
8445
8468
8478
8486
8491
8497
8502
8531
8541
8590
8603
8618
8655
8664
8668
8714
8734
8764
8769
8774
8795
8822
8863
8895
8901
8918
8934
8939
8945
8950
8956
8960
8968
8982
8987
9031
9039
9047
9066
9077
9098
9112
9120
9135
9144
9160
9165
9192
9207
9211
9217
9245
9263
9286
9311
9323
9339
9359
9369
9374
9381
9407
9413
9418
9432
9436
9454
9509
9545
9551
9626
9631
9641
9658
9676
9685
9690
9701
9705
9720
9730
9748
9769
9778
9803
9827
9850
9864
9872
9877
9883
9924
9970
9993

Loading data, please wait...