Increased computational accuracy in multi-compartmental cable models (Lindsay et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:129149
Compartmental models of dendrites are the most widely used tool for investigating their electrical behaviour. Traditional models assign a single potential to a compartment. This potential is associated with the membrane potential at the centre of the segment represented by the compartment. All input to that segment, independent of its location on the segment, is assumed to act at the centre of the segment with the potential of the compartment. By contrast, the compartmental model introduced in this article assigns a potential to each end of a segment, and takes into account the location of input to a segment on the model solution by partitioning the effect of this input between the axial currents at the proximal and distal boundaries of segments. For a given neuron, the new and traditional approaches to compartmental modelling use the same number of locations at which the membrane potential is to be determined, and lead to ordinary differential equations that are structurally identical. However, the solution achieved by the new approach gives an order of magnitude better accuracy and precision than that achieved by the latter in the presence of point process input.
Reference:
1 . Lindsay AE, Lindsay KA, Rosenberg JR (2005) Increased computational accuracy in multi-compartmental cable models by a novel approach for precise point process localization. J Comput Neurosci 19:21-38 [PubMed]
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t; I K;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; C or C++ program;
Model Concept(s): Methods;
Implementer(s):
Search NeuronDB for information about:  I Na,t; I K;
/
LindsayEtAl2005
readme.txt
03-192.pdf
AnalyseResults.c
BitsAndPieces.c
CellData.dat
CompareSpikeTrain.c
Ed04.tex
ExactSolution.dat
GammaCode
Gen.tex
Gen1.tex
Gen2.tex
Gen3.tex
Gen4.tex
Gen5.tex
Gen6.tex
GenCom.c
GenCom1.c
GenCom2.c
GenComExactSoln.c
GenerateInput.c
GenerateInputText.c
GenRan.ran
GetNodeNumbers.c
Info100.dat
Info20.dat
Info200.dat
Info30.dat
Info300.dat
Info40.dat
Info400.dat
Info50.dat
Info500.dat
Info60.dat
Info70.dat
Info80.dat
Info90.dat
InputCurrents.dat
InputDendrite.dat
JaySpikeTrain.c
JayTest1.dat
JayTest100.dat
KenSpikeTrain.c
KenTest1.dat *
KenTest10.dat
KenTest100.dat *
KenTest10p.dat
KenTest1p.dat *
KenTest2.dat
KenTest2p.dat
KenTest3.dat
KenTest3p.dat
KenTest4.dat
KenTest4p.dat
KenTest5.dat
KenTest5p.dat
KenTest6.dat
KenTest6p.dat
KenTest7.dat
KenTest7p.dat
KenTest8.dat
KenTest8p.dat
KenTest9.dat
KenTest9p.dat
LU.c
Mean50.dat
Mean500.dat
mosinit.hoc
NC.pdf
NC.tex
NC1.tex
NC2.tex
NC3.tex
NC4.tex
NC5.tex
NC6.tex
NCFig2.eps *
NCFig3.eps *
NCFig4.eps *
NCFig5a.eps *
NCFig5b.eps *
NCFig6.eps *
NCPics.tex
NeuronDriver.hoc
NewComExactSoln.c
NewComp.pdf
NewComp.ps
NewComp.tex
NewComp.toc
NewComp1.tex
NewComp2.tex
NewComp3.tex
NewComp4.tex
NewComp5.tex
NewComp6.tex
NewCompFig1.eps
NewCompFig2.eps *
NewCompFig3.eps *
NewCompFig4.eps *
NewCompFig5a.eps *
NewCompFig5b.eps *
NewCompFig6.eps *
NewCompPics.tex
NewComSpikeTrain.c
NewRes.dat
NewRes60.dat
NewRes70.dat
NewRes80.dat
NewSynRes40.dat
NewTestCell.d3
NResults.res
OldComExactSoln.c
out.res
principles_01.tex
rand
Ratio.dat
RelErr.dat
ReviewOfSpines.pdf
SpikeTimes.dat
TestCell.d3
TestCell1.d3
TestCell2.d3
TestCell3.d3
TestCell4.d3
testcellnew2.hoc
TestCGS.c
TestGen1.c
TestSim.hoc
TestSim020.hoc
TestSim030.hoc
TestSim040.hoc
TestSim050.hoc
TestSim060.hoc
TestSim070.hoc
TestSim080.hoc
TestSim090.hoc
TestSim1.hoc
TestSim100.hoc
TestSim200.hoc
TestSim300.hoc
TestSim400.hoc
TestSim500
TestSim500.hoc
                            
2
7
18
39
52
71
153
157
173
177
195
202
208
231
297
308
330
335
349
403
419
436
442
446
462
476
483
489
495
503
508
534
586
621
637
682
706
712
723
731
762
791
797
803
809
814
839
850
864
917
974
983
1040
1063
1108
1113
1131
1138
1179
1188
1193
1248
1252
1257
1273
1285
1302
1319
1376
1401
1457
1474
1497
1504
1509
1515
1550
1556
1574
1585
1595
1651
1672
1721
1727
1744
1764
1768
1782
1825
1850
1882
1886
1910
1914
1923
1949
1968
2001
2019
2059
2078
2082
2087
2121
2128
2134
2174
2207
2217
2239
2244
2272
2325
2340
2347
2383
2419
2467
2481
2549
2562
2615
2655
2664
2677
2708
2753
2757
2769
2805
2817
2822
2872
2919
2932
2952
3009
3020
3033
3052
3058
3064
3096
3114
3166
3182
3198
3216
3228
3239
3244
3259
3264
3270
3276
3319
3340
3412
3490
3514
3518
3532
3574
3657
3675
3680
3685
3698
3704
3725
3730
3741
3759
3767
3793
3835
3844
3867
3871
3878
3885
3890
3913
3918
3948
3954
3961
3991
4048
4052
4099
4119
4154
4169
4188
4239
4284
4338
4402
4430
4449
4487
4492
4507
4527
4537
4574
4638
4657
4689
4721
4735
4783
4789
4800
4812
4835
4841
4851
4910
4935
4950
4958
4980
5017
5022
5080
5107
5139
5151
5156
5186
5211
5217
5223
5270
5290
5314
5320
5355
5452
5506
5510
5551
5557
5570
5594
5632
5644
5682
5748
5786
5823
5828
5837
5855
5866
5871
5876
5880
6006
6013
6071
6075
6085
6108
6114
6119
6147
6164
6184
6189
6194
6203
6223
6239
6282
6317
6323
6355
6383
6406
6411
6416
6421
6431
6440
6454
6466
6483
6511
6515
6528
6542
6555
6559
6568
6574
6589
6620
6639
6651
6658
6728
6741
6760
6802
6809
6887
6936
6948
6956
6962
6983
7030
7107
7143
7160
7169
7215
7234
7296
7309
7348
7376
7387
7392
7397
7402
7435
7440
7484
7489
7510
7573
7577
7647
7688
7707
7711
7754
7771
7802
7865
7879
7885
7921
7929
7938
7949
7955
7960
7964
7999
8026
8039
8065
8069
8074
8139
8151
8161
8234
8292
8326
8352
8361
8375
8396
8402
8445
8486
8509
8533
8540
8559
8657
8663
8714
8719
8724
8734
8752
8769
8794
8803
8823
8831
8848
8854
8863
8901
8960
8968
9007
9013
9019
9023
9032
9048
9069
9076
9120
9135
9166
9193
9245
9295
9311
9329
9339
9350
9363
9373
9408
9419
9455
9545
9563
9596
9601
9645
9695
9700
9705
9720
9778
9863
9880
9894
9908
9924
9931
9936
9943
9947
9961
9970
9993

Loading data, please wait...